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Executive Summary 

This document describes the LEAD Data-Driven Dynamic Application System (DDDAS), which refers 
to the system responsible for the data ingestion and the execution of the simulations of the Digital 
Twin (DT) platform. The current document reflects the system’s design decisions by month fifteen 
(M15) of the project. The scope of this document is to present the design decisions and an initial 
implementation of the DDDAS towards building a scalable, robust, flexible, and reusable platform for 
urban logistics operations. 

With reference to the deliverable D2.1 “Technical Requirements – Solution Architecture”, LEAD 
develops a scalable and robust DT platform for urban logistics operation. The platform is reliable, and 
interoperable and based on an open architecture with open software standards, ensuring that privacy 
and ethical issues are respected by design. The platform includes ready-to-go integration connectors 
for the seamless ingestion of multiple, voluminous, and heterogeneous data-in-motion and data-at-
rest sources. Moreover, the platform supports analytics and efficient complex data driven simulations, 
reproducing operational conditions and by managing diverse data sources and the connectors’ 
provision.  

The design of the DDDAS, and by extension the platform, was developed through iterative discussions 
and virtual meetings with the Living Lab (LL) stakeholders and the teams designing closely related 
systems such as the Model Library (ML). This report includes an in-depth description of the LEAD 
platform architecture providing context for the design of the DDDAS. The platform’s high-level 
description and design choices are provided to the reader, together with its respective components. 
Finally, an initial deployment of the platform is presented, displaying the solutions and the technologies 
used. 

A very important and critical aspect, for the platform in general but also specifically for the DDDAS, is 
the ingestion of data in a scalable and flexible manner that can accommodate the various needs of 
the LLs. To that end, a presentation of the data ingested by each LL has been provided, offering the 
information needed towards a unification of the data entities that would enable simulation models’ 
interoperability. 

Last, this report focuses on the DDDAS communications with other system components and its role 
in defining key performance indicators (KPIs), selecting appropriate models, configuring input data 
and parameters, and executing a model’s sequence. 

This deliverable consolidates the challenges, specifications, design, and data that have led to the 
initial implementation presented. The DDDAS is a dynamic component that evolves together with the 
needs of the LLs and the provided simulation models. 
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2 Introduction 

In LEAD project, WP2 focuses on the implementation of a digital twin platform that supports decision 
making in last-mile logistics operations. To tackle such complex problems, the digital twin can perform 
simulations, guide logistics decision making and evaluate its impact. 

The objective of the LEAD DDDAS Deliverable is to design and implement the Dynamic Data-Driven 
Application System (DDDAS). The DDDAS has a special role for the LEAD platform. It is orchestrating 
the data ingestion, the digital models, the simulation, and optimisation environment as well as the 
connection between the Digital Twin and the physical world. It is a core component that contains a 
large portion of the features that a Digital Twin platform encompasses. 

2.1 Mapping LEAD Outputs 

This deliverable is based on the commitments made on LEAD’s Grant Agreement. In the following, a 
mapping between these commitments, as described in the Deliverable and the Tasks, and the 
project’s respective outputs and work performed is presented. A list of the deliverable’s components 
and task description together with the corresponding chapter of this report that discusses the approach 
that was followed and work that has been carried out can be seen on Table 1. 

Table 1 Adherence to LEAD's Deliverable & Tasks Descriptions 

LEAD GA Component Document chapters & Justification 

DELIVERABLE 

D2.4 DDDAS 

Initial prototype of the DDDAS system with  
(i) the data handling pipeline to enrich and 
validate streaming data,  
(ii) unification of datasets from different LLs,  
(iii) orchestration of models and data. 

The deliverable focuses on the design and 
implementation of the DDDAS component of the 
LEAD platform. 

Initially, the platform architecture is presented to 
provide a foundation for the system’s description. 

Then, the data management and storage principles 
of the DDDAS system are discussed along with 
separate cases for each LL and their connections 
to the meta-model. 

Finally, the system’s specifications along with the 
initial deployment and its orchestration are 
provided to the reader. 

TASKS 

ST2.4.1: Data Handling Pipeline In Chapter 3 the overall LEAD architecture is 
presented, overviewing the general data handling 
approach of the platform. Furthermore, in Section 
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Using the API’s designed by the previous task this 
sub-task ingests the data from external systems, 
performs data clean up, validation, and where 
possible data augmentation and fusion. 

In a dynamic Big Data environment data validation 
is critical and complex task. This pipeline then 
either stores data for future use (batch or micro-
batch), uses it to validate the scenarios where 
ground truth is missing (i.e., based on the following 
set of conditions what was the outcome?), or pass 
it on to the DDDAS sub-system for immediate use. 

0, information regarding the data ingestion pipeline 
for each LL is presented. It covers the data pre-
processing, augmentation, and thresholding 
validation. 

Moreover, sections 4.4, 4.5, and 4.6 further 
analyse the management and validation of the 
input data, thresholds while also presents the 
management of the results from the execution of 
the simulation models. 

ST2.4.2 Dynamic Data-Driven Application 
Systems 

Once the scenarios have been programmed using 
the visual interfaces, the DDDAS system manages 
the simulation process by provisioning 
computational hardware, initializing the models 
and managing outputs. 

The key complexity in this task is temporal and 
change management. Temporal complexity comes 
from either different simulation horizon 
requirements (i.e., real-time, short, medium- or 
long-term predictions) or simulation execution 
timescales (i.e., the combination of models for 
each possible outcome may take different times to 
execute). 

The DDDAS system also needs to continue to 
monitor the Data Pipeline and make decisions on 
whether simulation outcomes will be relevant or 
not. A drastic change in ground realities may make 
a simulation run moot and may require re-
initialisation, alternatively the DDDAS can choose 
to spool up parallel simulations and then using 
future real-time data validate whether the 
outcomes were significantly affected using the 
validation data. 

Chapter 5 covers aspects of the DDDAS design 
and implementation. First, methodology for 
defining the specifications, the key actors of the 
system and the functional and non-functional 
requirements are set (5.1). 

These sections cover the functional, non-
functional, design, and component analysis of the 
DDDAS. 

Since the models from the LLs are not yet ready for 
execution in the platform, temporal challenges are 
going to be addressed in Period 2 of the project, as 
the complexity of the LL representation will have 
evolved and further models will have been added 
to the Model Library. 

Finally, an early overview of the threshold 
management for the LEAD MVP is reported in this 
deliverable. Further work will be carried out once 
the LLs are operational and capable to refine this 
functionality. This will be reported in D2.6 (M27). 
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2.2 Deliverable Overview and Report Structure 

This report presents an in-depth description of the LEAD’s Dynamic Data-Driven Application System 
(DDDAS), its design and architecture, how it interfaces with the physical world and within the LEAD 
platform as well as the dashboards it offers to the user. 

In Chapter 3 the overall LEAD architecture is presented. It offers to the reader a crucial knowledge 
foundation for better understanding of the DDDAS. Then, in Chapter 4 the data ingestion pipelines 
are analysed separately for each LL’s case. The DDDAS is then discussed (Chapter 5); the 
specifications of the system, its actors and requirements are initially presented while the architecture, 
components and implementation follow giving a thorough description of the system to the reader. 

Finally, a conclusion (Chapter 6) summarizes the information provided in the deliverable while also 
presenting an outlook of the DDDAS in the context of the overall project. 
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3 LEAD Platform 

In the following sections, an overview of the LEAD platform architecture is going to be presented. The 
DDDAS central to the overall platform’s design since it is the starting point where simulations are 
configured, and the data inputs and model parameters are set. 

3.1 High-Level Architecture 

The LEAD platform’s purpose is to provide the infrastructure where the models can be executed 
towards building a complete digital twin, serving the needs and use cases of the LLs. As displayed in 
¡Error! No se encuentra el origen de la referencia., data should be ingested from the physical world 
into the platform through APIs, established IoT sensors’ protocols or in a different fashion as defined 
by the availability and accessibility of the operational data. 

 

Figure 1 LEAD platform high-level architecture 

The DDDAS is responsible to build the context entities describing the physical world but also 
communicate with the Model Library to connect those entities with available models. The DDDAS also 
manages the scenario creation and the simulation orchestration, making any outputs available to the 
DSS. The communication of the DDDAS and DSS concerns the results of a simulation. The DSS is 
designed to identify the best-case scenarios through cognitive methods and present this output to the 
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user. Both the DDDAS and DSS communicate with a dashboard that accepts all user inputs and 
provides access to the storage infrastructure of the platform. 

3.2 Components 

The LEAD platform has been designed in a modular fashion so that it accommodates a wide range of 
requirements that emerge from the various use cases of the LLs. Such use cases involve 
investigations regarding a single definitive business decision while others concern repetitive 
simulations with changing parameters on real time and historical data. 

Thus, the DDDAS has been designed to use multiple systems for data ingestion to accommodate 
different data scenarios, such as message brokers for streaming data, a distributed file system for 
large static or nearly static data, big data stores such as Hadoop, etc. Additionally, the system is 
expected to run a variety of models developed by different partners and using different technologies. 

 

Figure 2 An abstract overview of the DDDAS-related components.  

 

An abstract overview of the DDDAS-related components is presented in Figure 2. The user interface 
component is the main interaction point of the platform with the user. The dashboard exposes 
functionality that is integrated into the DDDAS and DSS. From there, the user can browse through the 
available KPIs and configure a scenario; that includes providing a model sequence along with input 
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parameters and associated datasets. Therefore, the simulation management component of the 
DDDAS along with the Model Library guide the user through the scenario creation together with 
appropriate and user-friendly frontend elements. Additionally, the simulation manager accesses and 
retrieves any information necessary from the storage infrastructure consisting of the filesystem, the 
databases, and a message broker. After the submission of a scenario the simulation manager 
communicates with the task scheduler to orchestrate the simulation’s execution. After a scenario 
simulation execution, the simulation manager is notified and handles the storing and indexing of the 
results to the appropriate storage resources. 

3.3 Deployment 

With references to the criteria and solution analysis presented in the deliverable D2.1 “Technical 
Requirements – Solution Architecture” 1, we choose for the LEAD platform the following technologies. 
As an initial step, the platform is hosted on a single server and can be scaled as needed. It is also 
deployed with CI/CD procedures and all microservices are containerized. The dashboard’s frontend 
is implemented using the popular JavaScript framework ReactJS2 while the backend is based on 
Python Flask3. A Relational Database Management System (RDBMS) in the form of PostgreSQL4 is 
chosen. A document-based database along with an in-memory data structure is also possible to be 
provided depending on the use cases and the performance achieved. 

Apache Kafka5 is a well-established open-source event streaming platform that is often preferred for 
applications with real time data. Kafka topics are therefore used for data storage, and they can be 
distributed to other platforms through Kafka Connect in a scalable and reliable manner. Kafka Connect 
imports data from any external source – called Source connector – and exports data to any external 
system – called Sink connector- offering the flexibility of changing data source/export system at any 
time in the future without changing the stream processing code. The Kafka cluster is administered by 
a Zookeeper6; this service keeps track of the cluster’s metadata, such as the nodes, topics, partitions 
and so on. 

Another platform under the Apache Foundation has been selected as a task scheduler. Apache 
Airflow7 is a platform to programmatically author, schedule and monitor workflows. Comes pre-loaded 
with features that provide dynamicity and extensibility to the platform’s model execution. It also offers 
an elegant UI that will be used for monitoring the execution pipelines. Finally, the machine's resources 
along with metrics from the Kafka subsystem and the storage infrastructure are monitored through 
Prometheus exporters. The collected data can then be visualized with dedicated dashboards 
(Grafana, Prometheus) in a variety of different graphs and with alerting functionality built in. 

                                                
1 D2.1 “Technical Requirements – Solution Architecture”, LEAD project 
2 https://reactjs.org/ 
3 https://flask.palletsprojects.com/en/2.0.x/ 
4 https://www.askpython.com/python-modules/flask/flask-postgresql 
5 https://kafka.apache.org/ 
6 https://zookeeper.apache.org/ 
7 https://airflow.apache.org/ 
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Figure 3 LEAD platform deployment 
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4 Data Pipeline 

4.1 Pipeline Principles 

To ensure reproducibility of the platform, all component installations have been automated and 
scripted. These scripts are managed by a version control system and are part of a Continuous 
Integration and Continuous Deployment pipeline (CI/CD). This pipeline will monitor the code 
repositories of the various components and any changes will trigger re-testing and operator instructed 
redeployment of the platform. In terms of system functionality, the next phase of the platform 
development will focus on ingesting more data sources and integrating them with the higher layers of 
the architecture, e.g., Dashboard. As more data are integrated into the system and more analysis is 
performed, the requirements and expectations of the underlying system will evolve. This task will adopt 
an agile approach in dealing with change requests. 

Kafka topics are used for a variety of tasks in the context of the DDDAS system. Firstly, they are the 
main point of reference for the physical-world real-time data. The data ingestion to the Kafka topics 
will be visualized with a platform (e.g., Grafana8) so that the data rate, volumetrics and availability for 
each LL can be precisely defined and monitored. Moreover, the incoming real-world data can be used 
in conjunction with historical data for the simulations but also as a validation measure on the output 
of a simulation, provided that the models allow for such input. Furthermore, specific topics can pass 
information to the dashboard together with the scheduler API so that the user is updated on the status 
of the simulations that are being executed. In addition, information regarding the simulation execution 
history and in cases output data will be stored in Kafka topics. 

4.2 Data Storage 

As previously mentioned, the Apache Kafka distributed event streaming platform is mainly used for 
the storage of the incoming streaming data. It is used because of its reliability and scalability, but also 
for the flexibility it provides to share the data with other data storage solutions through Kafka-Connect. 
Since the DDDAS platform is made to support the execution of models that are developed using a 
wide variety of technologies and for different cases, the potential to seamlessly provide the data to a 
variety of storage solutions is of uttermost value and importance. As a result, the Kafka topics, a 
RDBMS and a time series database are provided as out-of-the-box storage solutions that can be 
expanded based on the needs of the LLs and their models. 

4.3 Data Ingestion 

4.3.1 LL1 - Madrid 

4.3.1.1 Data Connectors 
In Madrid LL, the three different data types, as defined in deliverable D2.3, are 1) Vehicle information, 
2) Service information, and 3) Settings information. As the LL scenario is a totally new initiative, there 

                                                
8 https://grafana.com/ 
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is no historical data currently available. Data will be provided by CLOGIN and PAN, in Excel files (xlsx, 
csv). These files will be uploaded to the server using File Transfer Protocol (FTP) and stored in 
appropriate data structures such as document and time-series databases. Before the platform extracts 
data from it, pre-processing and augmentation of the data is required, as described in Section 4.3.1.2. 
To simulate Madrid use cases and scenarios, data are received through the Kafka platform and stored 
to dedicated (Kafka) topics, each topic corresponds to each data type - 3 in total for Madrid LL - while 
an extra topic is used to contain with all the data types merged information as described in Section 
4.3.1.2. Moreover, the Kafka producers ingesting the data are responsible for any data conversion 
needed by the data consumers of each model. Kafka producers that can be manually executed on 
historical data are also implemented to support different use cases. During the simulation execution, 
model consumers use the necessary data from the available sources.  

4.3.1.2 Data Pre-Processing & Augmentation 
In Madrid LL, data pre-processing and augmentation are crucial to developing specific models for 
routing optimization on current and the new scenarios. To extract general data characteristics such 
as how many clients and answer important questions for developing LL models such as how many 
deliveries in a given time window on each of the five postal codes of Madrid LEZ, delivery time period, 
number of deliveries per day of week/month/year and more, data should be enriched with some extra 
information. The initial data are provided in Excel files as mentioned in Section 4.3.1.1 and the extra 
information is stored initially as extra columns to them. For data pre-processing and augmentation, 
Python and specifically the pandas library is used and therefore data are stored in DataFrame objects, 
that is 2-dimensional labelled data structures with columns of potentially different features/indicators 
offering a great level of functionality for further data analysis.  

A fundamental source of information to be fed into the Madrid route optimization models is the delivery 
addresses dataset that must be expressed in latitude and longitude coordinates (stored in 2 new 
columns of the delivery data frame with labels delivery latitude, and delivery longitude respectively). 
Moreover, aiming at computing statistical characteristics at the pre-processing stage is needed to split 
delivery date to day, month, and year respectively and save them to separate columns of the order 
data frame and convert date to day of the year using among others the datetime python package. All 
the information regarding orders, deliveries, fleet, and settings are then merged to one data frame and 
potentially to one Excel/csv file based on a common field. The common field between order and fleet 
data frames is the waybill number. 

4.3.1.3 Data Stream Meta Extraction 
As previously mentioned, the Madrid LL data are provided as Excel files and after the data pre-
processing and augmentation stage, they are stored in 3 different Kafka topics. Each Excel file or 
Kafka topic has its own features/characteristics that can be considered as metadata for data 
extraction. During the execution of a simulation, these files are retrieved based on conditions, and this 
procedure can be documented and stored in the document-oriented database. Metadata from data 
streams can also be meta extracted if needed based on scenarios and user requirements that are 
defined through the user dashboard. 

 

 



 

 
Page 18 of 39 

 D2.5 LEAD DDDAS System v1 

4.3.2 LL2 - The Hague 

The Hague LL aims to explore the interactions of different delivery methods for parcel distribution. The 
LL will model crowd shipping solution as well as the integration of the various delivery methods into 
one platform. The platform includes the interactions with other logistical and technological small and 
medium enterprises. Using MATSim, MASS-GT and network models, it is expected to investigate their 
impact to the parcel delivery efficiency. 

4.3.2.1 Data Connectors 
In its current version, the DT modelling of the LL has 6 static datasets, as described in deliverable 2.3. 
The details on the mechanisms, protocols and storage of this data are still being defined and they will 
be available in the next months. The zonal data and parcel nodes data are delivered in shape files. 
The parcel demand, delivery time of parcels, activity-based data and vehicle data are tables that will 
be provided in an Excel file or CSV format. More data sources are expected to be included in future 
versions of the DT; it is yet to be confirmed by the LL’s partners.  

4.3.2.2 Data Pre-Processing & Augmentation 
The data processing and augmentation is done within the models and data format is presented in 
D2.3. Once new data streams will be identified, the pre-processing and augmentation processes will 
be enhanced accordingly. 

4.3.2.3 Data Stream Meta Extraction 
As mentioned in section 4.3.2.1, The Hague LL data are provided as Excel or CSV files and after the 
data pre-processing and augmentation stage, they are stored in 3 different Kafka topics . Each 
Excel/CSV file or Kafka topic has its own features/characteristics that can be considered as 
metadata for data extraction. For the shapefiles, the metadata can be obtained in a XML format. 
During the execution of a simulation, these files are retrieved based on conditions, and this 
procedure can be documented and stored in the document-oriented database. Metadata from data 
streams can also be meta extracted if needed based on scenarios and user requirements that are 
defined through the user dashboard. 

4.3.3 LL3 - Lyon 

In the Lyon LL a consolidation hub will support the local last mile operations within the district whilst 
the LEAD platform will be used for exploring the impact of alternative delivery modes on various socio-
economic KPIs.  

4.3.3.1 Data Connectors 
The data to be collected include traffic data from Grand Lyon Métropole (open dataset) together with 
historical socioeconomic and logistics data. Another set of data is to be provided by the operators 
involved in the experimentations of the LL, concerning existing operation indicators on other sites and 
local indicators once the LL is implemented (parcel’s types and volumes, vehicles, origins, and 
destination). All these data will be provided under .csv format and stored in IRT SystemX servers to 
be executed by the simulation models to populate the scenarios. 
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Data will be generated by local video cameras to supervise the local logistics traffic. Data will be stored 
in a dedicated IRT SystemX server to ensure GDPR compliance before adequate processing 
(anonymization). 

4.3.3.2 Data Pre-Processing & Augmentation 
Rough data will be pre-processed to generate the actual characteristics of logistics operation at LL 
level and beyond (customers, volumes, requests, operations). Historical socioeconomic, logistics and 
traffic data will be extracted to generate a synthetic population and elaborate the distribution scenarios 
(as-is and to-be) relevant for the LL. 

Video data will be processed through image recognition algorithms to determine the share of logistics 
vehicles in the global traffic flow. These treatments will support the generation of a range of new KPI 
illustrating the contribution of logistics operations in the global traffic and its timely tendencies. 

4.3.3.3 Data Stream Meta Extraction 
Different datasets will be established: logistics and socioeconomics data will be stored in different 
containers than video data, due to GDPR requirements. Processed information extracted from video 
data could be stored into the main dataset. Each specific folder could be considered as metadata for 
extraction as requested for simulations. Data stream can be extracted if needed using specific 
metadata based on scenarios/user requirements elaborated in the simulation. 

4.3.4 LL4 - Budapest 

Budapest LL aims to investigate the effects of WSZL deliveries to public transportation with use of 
micro hubs. The first goal is to define the possible locations of the micro hub in connection with the 
zones, which need developments. Secondly, we focus on using dedicated time windows for delivering 
to local shops. At last, we are investigating the effects of different vehicle types. 

4.3.4.1 Data Connectors 
In Budapest, the different data types are defined in Deliverable 2.3 like 1) store information, 2) mini-
hub information, 3) fleet information, 4) origin destination information and 5) order information. All 
currently available data are historical and provided by WSZL in Excel files. These files are uploaded 
to a server using File Transfer Protocol (FTP) and stored in appropriate data structures such as 
document and time-series databases. Before the platform extracts data from them, data pre-
processing and augmentation needed as described in Section 4.3.4.2. To simulate Budapest use 
cases and scenarios, data are received through the Kafka platform and stored to dedicated (Kafka) 
topics, each topic corresponds to each data type - 5 in total for Budapest LL and an extra topic with 
all the data types merged as described in Section 4.3.4.2. Moreover, the Kafka producers ingesting 
the data are responsible for any data conversion that is needed by the data consumers of each model. 
Kafka producers that can be manually executed on historical data are also implemented to support 
different use cases. During the simulation execution, model consumers use the necessary data from 
the available sources. 

4.3.4.2 Data Pre-Processing & Augmentation 
In Budapest LL, data pre-processing and augmentation are crucial to develop specific models both 
for routing optimization, rescheduling, and managing the delivery time period. To extract data general 
characteristics such as how many orders per client in a given time window, those zip codes of the 
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stores and mini-hub in Budapest, that will be delivered by WSZL. The WSZL will provide Excel files 
with information such as the type and capacity of the vehicles, the vehicle quantity of their fleet and 
the working time of the vehicles’ drivers. Moreover, WSZL will give information about the orders such 
as delivery date, time-window, unloading time and order quantity as mentioned in Section 4.3.4.1. 
BKK will provide the Macroscopic Transport Model of Budapest for the DT with the static traffic data 
(the origin-destination matrices will be fixed except the freight layer) and territorial data.  Thus, in the 
Budapest case, we have 5 different data frames that correspond to 5 different data types that are 
mentioned in Section 4.3.4.1. 

Very important information for the Budapest model are the stores’ and mini-hub’s addresses, which 
will be expressed in geolocation format (latitude, longitude), using the database provided by WSZL. 
We then merge order, fleet, mini-hub and store information to one data frame and potentially to one 
Excel/csv file based on a common field. 

4.3.4.3 Data Stream Meta Extraction 
In Budapest LL, as mentioned in Section 4.3.4.1 the different types of data are in Excel files and after 
a data pre-processing and augmentation, they are stored in 5 different WSZL Kafka topics. Each 
Excel/file or Kafka topic has its own features/characteristics that can be considered as metadata for 
data extraction. Each time during the simulation, these files are retrieved based on requirements, and 
this procedure can be documented and stored in the document-oriented database. Data stream can 
be meta extracted if needed using specific metadata based on scenarios/user requirements that are 
defined via the user dashboard and/or API. 

4.3.5 LL5 - Oslo 

Oslo LL aims at testing four scenarios for NIMBER's B2C home deliveries of larger products from 
IKEA furniture superstore in a stepwise refinement from dedicated vans and direct deliveries to 
deliveries via a micro hub through crowd-shipping and, finally, with additional suppliers, adjacent to 
IKEA, from NIMBER’s business customers database. These scenarios will, wholly/partly, use e-
vehicles. At this stage, the descriptions that follow may be subjected to changes. 

4.3.5.1 Data Connectors 
In Oslo LL, the 3 different data types as defined in Deliverable 2.3 are 1) store information, 2) trip 
information and 3) order information. All currently available data are historical and provided by 
NIMBER in Excel files or other appropriate formats. These files are uploaded to a server using File 
Transfer Protocol (FTP) and stored in appropriate data structures such as document and time-series 
databases. Preliminary to platform extracting data from them, one must pre-process and augment 
them according to the procedures illustrated in Section 4.3.5.2. To simulate Oslo use cases and 
scenarios, data are received through the Kafka platform and stored to dedicated Kafka topics, each 
topic corresponds to each data type - 3 in total for Oslo LL and an extra topic with all the data types 
merged as described in Section 4.3.5.2. Moreover, the Kafka producers ingesting the data are 
responsible for any data conversion that is needed by the data consumers of each model. Kafka 
producers that can be manually executed on historical data are also implemented to support different 
use cases. During the simulation execution, model consumers use the necessary data from the 
available sources.   
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4.3.5.2 Data Pre-Processing & Augmentation 
In Oslo LL, data pre-processing and augmentation are crucial to developing specific models to test 
the viability of each scenario with respect to the given KPIs. Extracting data/information with respect 
to general characteristics such as the number and features of orders/customers, the routing of the 
deliveries with/without the micro hub, the number of bringers and their vehicle types, fuel types, kms 
driven etc., implies referring to the data provided in Excel files as mentioned in Section 4.3.5.1. For 
data pre-processing and augmentation, adequate software like e.g., Python is applied, and data are 
stored in convenient data structures with columns/records containing the relevant features/indicators. 
Hence, in the Oslo case, we have 3 different data structures that correspond to 3 different data types 
that are mentioned in Section 4.3.5.1. 

One of the most important information that should be extracted for the Oslo models is the origin and 
destination addresses to be reported in geolocation format (latitude, longitude), using Google Maps 
Platform and specifically Google Key APIs. The order and delivery latitude and longitude coordinates 
are stored with labels order latitude, order longitude, delivery latitude, and delivery longitude 
respectively. Moreover, aiming at computing statistical characteristics at the pre-processing stage one 
needs to split both order and delivery date to day, month, and year granularity respectively and save 
them to separate columns of the order data frame and convert date to day of the year using, among 
others, the datetime python package. We then merge store, trip, and order information to one data 
frame and potentially to one Excel/csv file based on a common field. The common field between store, 
trip and order data frames is the order id.  

4.3.5.3 Data Stream Meta Extraction 
In Oslo LL, as mentioned in Section 4.3.5.1 the different types of data are in Excel files or similar and 
after a data pre-processing and augmentation, they are stored in 3 different NIMBER Kafka topics. 
Each Excel/file or Kafka topic has its own features/characteristics that can be considered as metadata 
for data extraction. Each time during the simulation, these files are retrieved based on requirements, 
and this procedure can be documented and stored in the document-oriented database. Data stream 
can be meta extracted if needed using specific metadata based on scenarios/user requirements that 
are defined via the user dashboard and/or API. 

4.3.6 LL6 - Porto 

Porto LL aims at transforming SONAE's deliveries towards electric mobility and at optimizing its fleet 
operations. The first goal is to position the EDV charging stations to SONAE's stores by considering 
some parameters such as vehicle type, delivery lead time, distance travelled, traffic, frequency, and 
duration of EV stop. Secondly, we focus on routing optimization and rescheduling orders finding 
alternative shortest paths. 

4.3.6.1 Data Connectors 
In Porto LL, the 4 different data types as defined in Deliverable 2.3 are 1) store information, 2) charging 
station information, 3) fleet information and 4) order information. All currently available data are 
historical and provided by SONAE in Excel files. These files are uploaded to a server using File 
Transfer Protocol (FTP) and stored in appropriate data structures such as document and time-series 
databases. Before the platform extracts data from them, data pre-processing and augmentation 
needed as described in Section 4.3.6.2. To simulate Porto use cases and scenarios, data are received 
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through the Kafka platform and stored to dedicated (Kafka) topics, each topic corresponds to each 
data type - 4 in total for Porto LL and an extra topic with all the data types merged as described in 
Section 4.3.6.2. Moreover, the Kafka producers ingesting the data are responsible for any data 
conversion that is needed by the data consumers of each model. Kafka producers that can be 
manually executed on historical data are also implemented to support different use cases. During the 
simulation execution, model consumers use the necessary data from the available sources. 

4.3.6.2 Data Pre-Processing & Augmentation 
In Porto LL, data pre-processing and augmentation are crucial to developing specific models both for 
routing optimization, rescheduling, and location charging stations. To extract data general 
characteristics such as how many clients, how many clients and reply important questions for 
developing Porto models potentially such as how many orders per client in a given time window, which 
are the code postal in Porto that SONAE is delivering, order time period, delivery time period, number 
of delivery per day of week/month/year, some extra information should be extracted from data 
provided in Excel files as mentioned in Section 4.3.6.1 and stored initially as extra columns to them. 
For data pre-processing and augmentation, Python and specifically the Pandas library is used, and 
data are stored in data frames, 2-dimensional labelled data structures with columns of potentially 
different features/indicators. Hence, in the Porto case, we have 4 different data frames that correspond 
to 4 different data types that are mentioned in Section 4.3.6.1. 

One of the most important information that should be extracted for the Porto models is the store and 
delivery addresses to be expressed in geolocation format (latitude, longitude), using Google Maps 
Platform and specifically Google Key APIs. The order and delivery latitude and longitude coordinates 
are stored in 4 new columns of the order data frame with labels order latitude, order latitude, delivery 
latitude, and delivery longitude respectively. Moreover, aiming at computing statistical characteristics 
at the pre-processing stage is needed to split both order and delivery date to day, month, and year 
respectively and save them to separate columns of the order data frame and convert date to day of 
the year using among others the datetime python package. We then merge order, fleet, and store 
information to one data frame and potentially to one Excel/csv file based on a common field. The 
common field between order and fleet data frames is the vehicle license of the delivery car and the 
common field between store and order data frame is the store id. 

4.3.6.3 Data Stream Meta Extraction 
In Porto LL, as mentioned in Section 4.3.6.1 the different types of data are in Excel files and after a 
data pre-processing and augmentation, they are stored in 4 different SONAE Kafka topics. Each 
Excel/file or Kafka topic has its own features/characteristics that can be considered as metadata for 
data extraction. Each time during the simulation, these files are retrieved based on requirements, and 
this procedure can be documented and stored in the document-oriented database. Data stream can 
be meta extracted if needed using specific metadata based on scenarios/user requirements that are 
defined via the user dashboard and/or API. 

4.4 Data Input Validation 

Providing a set of valid data as inputs to the models is a challenging process for the LEAD platform, 
since multiple actors have an active role in the development of the models to be executed. Therefore, 
a well-defined set of metadata that characterizes all data that are ingested to the platform is needed. 
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To that end, when the user is presented with the options to provide input data to a model, based on 
its specification as provided by the Model Library, data types are queried across the file system, Kafka 
topics, and the available databases. A dedicated DataTypes table in the RDBMS of the platform 
handles the management of the available data types and entries are added in cases such as: 

 The execution of a scenario that is generating data 
 The addition of a data source providing data to a Kafka topic 
 An update to the model library 

Firstly, static data stored in databases, or the file system have their RDBMS table entries generated 
or entered manually. Similarly, every topic that is created for a new data source is accompanied with 
its corresponding entry in the DataTypes table. Finally, the description of the data generated by each 
model should be provided by the Model Library so that the output data are discovered by the scenario 
execution finalization scripts and are properly tagged as new rows to the table. Therefore, a complete 
view of the types of the available data can be extracted and data can be provided to the models based 
on such properties. 

However, the platform only provides such a higher-level approach and several points of caution need 
to be addressed by the model owners and the platform’s administrators. The data are provided to the 
models with the validation covering aspects of their metadata. This does not involve their internal 
structure or content. As such, proper validation, and error handling at runtime by the models is still 
essential. 

4.5 Input Threshold Monitoring 

Following the selection of the KPI and the corresponding model(s), rules regarding a successful 
simulation scenario are applied in the form of thresholds. These thresholds are the means to evaluate 
the model’s potentials and guide the users towards valuable business insights. Given that a scenario 
can be executed multiple times based on the range and step of its input parameters, a proper 
monitoring of the KPIs evaluation with regard to the input thresholds can provide useful feedback to 
the users. 

Such functionality is provided through a dedicated topic of the message broker that publishes JSON 
messages concerning the KPI outputs of running scenarios. Such output can also be linked to a 
visualization platform such as Grafana for better monitoring experience. Finally, based on the 
monitoring output and through the web interface of the Apache Airflow, the user has the ability to act 
on the scenario execution pipelines by cancelling one or more steps to save resources or to further 
investigate the model execution process through its logs. 

4.6 Model Result Management 

A final significant part of the scenario execution process is the storage of the results of an executed 
scenario in a consistent but flexible manner that would facilitate data sharing across models. The 
platform receives a definition of the output that it expects from every model through the specification 
provided by the Models Library. At the end of the execution of a model, a set of metadata is stored in 
the DataTypes table of the RDBMS of the LEAD platform. Each row contains the metadata of the 
output with information such as the output data type, the date of scenario execution, the output path, 
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URL or topic, the model and its execution parameters, the user that initiated the scenario and the 
execution duration while more can be added as needed. 

Flexibility is offered to the model owners to feed the results of their models to several options, such 
as the message broker, a database, the file system, or any other requested data storage solution. 
Currently, most models are dependent on files as the main input and output method, therefore a 
strategy regarding the naming of the directories in a generated standardized and unique manner has 
been followed. Further options are investigated considering the future gradual incorporation of real-
time data. 
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5 Dynamic Data Driven Application System 

5.1 Technical Specifications 

5.1.1 Methodology 

An overview of the methodology that is used to define the technical requirements for DDDAS is shown 
in Figure 4. Four main components have been identified: 

1. the usage (business) scenarios,  
2. the key actors,  
3. the assets, 
4. the functional and  
5. non-functional requirements.  

A key actor is a human that specifies a role played by a user that interacts with the LEAD platform. An 
asset is an entity that communicates with/or are used by the platform during the execution or 
realization of a use case. Usage (business) scenarios specify a series of actions or events between 
an actor and a system to achieve a goal. These goals are based on functional and non-functional 
requirements. 
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Figure 4 Methodology schema for the definition of the technical requirements 

The requirements can be categorised based on their priority as displayed in Table 2. The category 
key is then going to be used throughout the tables that define the requirements. The categories 
describe the status of the requirements that have been discussed and agreed on by the stakeholders 
and will be formed through iterative discussions. 

Table 2 Key requirement categories 

Category Key Description 

MUST M A requirement that must be satisfied for the platform to succeed 

SHOULD S A high-priority item that should be included in the platform. Often a critical 
requirement which can be satisfied differently if strictly necessary 

COULD C A requirement which is considered desirable but not necessary. It will be 
included if time and resources permit. 
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WON’T W The stakeholders have agreed that the requirement will not be implemented 
in the current project but may be considered for the future. 

 

5.1.2 Usage Scenarios 

Usage scenarios describe the overall user interactions with the platform. A few usage scenarios 
describing functionality to be incorporated in the DDDAS are listed in Table 3. 

Table 3 DDDAS usage scenarios 

Usage Scenario ID Description 

Add/Remove 
data from the 
platform 

A Refers to any activities related to adding or removing data sources from 
the platform. 

Pre-processing 
data ready for 
analysis 

B Refers to any preparation needed for the analysis of the datasets 
(cleansing, normalising, extracting, merging, transforming, loading) 

Building Digital 
Twin Scenarios  

C The activities involved in visualisation and analysis using statistical, 
modelling, and AI-based analytics tools and code 

Orchestrating 
Models 

D Refers to creating algorithms and workflows through applications or 
programming to transform raw data into statistical results 

Curating & 
archiving data 

E The activities involved in the lifecycle of a trial from the initial brief or 
experimental design to the release of data from the trial as complete and 
final 
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5.1.3 Actors & Assets 

A definition of the key actors and assets of the platform have been presented in Section 5.1.1. It 
concerns any person or system respectively that has a role interacting with the LEAD platform. The 
actors and assets as identified in the current state of the project is listed in Table 4 and Table 5 
respectively. 

Table 4 DDDAS actors 

Actor ID Description 

Data Owner DO The person responsible for data curation including classification 
according to GDPR and Commercial Sensitivity 

Modeller MO The person responsible for constructing or programming analytical 
models 

Analyst AN The person responsible for designing and running DT scenarios 

System 
Administrator 

SA The person responsible for operational availability of the platform 

User Administrator UA The person responsible for user registration and onboarding 

 

Table 5 DDDAS assets 

Asset ID Description 

WAN WA The wide area network the platform is connected to 

LAN LA The local area network associated with the platform 

Data pipeline DP Data transport, transformation and storage mechanisms 

Packaged 
Application 

PA Application software used by the platform (e.g., MATSim) 

Custom Software CS Scripts and applications of the platform 

External System ES Systems external to the platform (e.g., weather, traffic APIs) 
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5.1.4 Functional Requirements 

Functional requirements generally describe what a system or product must do, providing in detail what 
is being requested by the users. The functional requirements are presented in Table 6,Table 7, Table 
8, Table 9, Table 10 based on the component they concern along with the key actors, assets, and 
their priority category. 

Table 6 Functional Requirements: Add/Remove data from the platform 

Add/Remove data from the platform     

Functional Requirement ID Key Actors 
Involved 

Assets 
Involved 

Category 

Add data in any agreed format to the 
platform 

A.1 DO, MO, AN DP M 

Provide metadata for every file (e.g., 
sensitivity, keyword and tags, short 
description, owner and uploader) 

A.2 DO N/A S 

Provide volumetric information for 
validation purposes 

A.3 DO N/A S 

Securely add data following the security 
and data encryption requirements 
documented in D2.3 

A.4 DP N/A M 

 

Table 7 Functional Requirements: Pre-processing data ready for analysis 

Pre-processing data ready for analysis     

Functional Requirement ID Key Actors 
Involved 

Assets 
Involved 

Category 

Ability to clean data using data cleaning 
techniques, tools, and programming 
languages (e.g., Excel, Python, R)  

C.1 MO, AN DP, PA M 

Run classical statistic analytics and 
models normalising, extracting features 
(feature engineering), transforming data 

C.2 MO, AN DP, 

 PA 

M 
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Export reports in a range of formats (e.g., 
pdfs, PPT, Excel) from unattended 
techniques and models 

C.3 AN WA, LA, 
DP, ES 

M 

 

Table 8 Functional Requirements: DT Scenario Building 

DT Scenario Building     

Functional Requirement ID Key Actors 
Involved 

Assets 
Involved 

Category 

Enable the linking of data sources to 
models  

C.1 DO, MO, SA, AN DP M 

Enable discovery of suitable models C.2 MO ES M 

Enable parameterization of models C.3 MO, AN N/A M 

Enable the linking of models into a 
pipeline 

C.4 AN, MO ES M 

Automation of model pipeline C.5 MO, ES, AN ES S 

Enable support for input thresholding C.6 AN DP M 

Interrupt pipeline based on thresholding C.7 N/A N/A C 

 

Table 9 Functional Requirements: Orchestration Models 

Orchestrating Models      

Functional Requirement ID Key Actors 
Involved 

Assets 
Involved 

Category 

Ability to create algorithms through 
applications 

D.1 MO, AN DP, CS, 
ES, PA 

M 

Ability to create workflows through 
applications 

D.2 MO, AN DP, CS, 
ES, PA 

M 
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Ability to select concerned models D.3 MO, AN DP, CS, 
ES, PA 

M 

Ability to set configuration for simulation D.4 MO, AN ES M 

Ability to execute simulation D.5 SA, UA N/A M 

Table 10 Functional Requirements: Curating & archiving data 

Curating & archiving data     

Functional Requirement ID Key Actors 
Involved 

Assets 
involved 

Category 

Ability to collect data from diverse 
sources 

E.1 DO, AN, SA WA, LA, 
ES, DP, 
ES, CS 

M 

Ability to integrate data into repositories  E.2 DO, AN, ES WA, LA, 
ES, DP, 
ES, CS 

M 

Ability to capture records and 
documents and handle them 

E.3 DO, AN WA, LA, 
DP, ES 

M 

Ability to retrieve contextual data 
(logistic profile) 

E.4 DO, AN, SA WA, LA, 
ES, DP, 
ES, CS 

M 

Export reports in a range of formats 
(e.g., pdfs, Excel, CSV) from archiving 
data 

E.5 AN WA, LA, 
DP, ES 

M 
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5.1.5 Non-Functional Requirements 

Non-functional requirements concern aspects of usability, security, performance, reliability, 
supportability, testability, and maintainability of the DDDAS. The following tables provide a description 
of the non-functional requirements based on such aspects along with their priority category. 

Table 11 Non-Functional Requirements: Usability 

Usability   

ID Category Description 

US.1 S Custom information screens (e.g., for adding metadata) should be 
designed to make user tasks and workflows intuitive and efficient 

US.1 M Save analysis and visualization outputs to local drives 

US.2 M Record and retain metadata and volumetrics information associated 
with a dataset 

US.3 M It must be possible to access the platform remotely 

US.4 M The platform must be accessible to all project team members 

 

Table 12 Non-Functional Requirements: Security 

Security   

ID Category Description 

SE.1 M Physical security to Tier 1 minimum 

SE.2 M Secure access control to the platform 

SE.3 S Unified user management for the platform with IP restrictions, and 
permission delegation options 

SE.4 W Single sign-on 

SE.5 M Access to platform must be supported in writing from institutional PIs 
(and all other PIs will be informed) 

SE.6 M Connection to LEAD intranet will use SSH 

SE.7 S Hold all data in an encrypted vault (AES128 min.) 
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SE.8 S Offer an encrypted mail drop for the most sensitive information 

 

Table 13 Non-Functional Requirements: Information Management 

Information 
Management 

  

ID Category Description 

IM.1 M All analysis outputs should be checked back into the platform 
(even if saved locally) 

IM.2 S Outputs are automatically classified based on  

Table 14. Status may be changed based on Data Governance 
meeting 

IM.3 C Support for distributed code repositories 

IM.4 M Data should be anonymised and followed the General Data 
Protection Regulation (GDPR) 

 

Table 14 Output Combinations 

 

 

 

Public 

 

Private 

 

Restricted 

Public     Public                         Private                             Restricted 

Private     Private                         Restricted                        Restricted 

Restricted Restricted            Restricted                        Restricted 

 

Table 15 Non-Functional Requirements: Infrastructure 

Infrastructure   

ID Category Description 

IN.1 M Platform must be protected against unauthorised intrusion 
and viruses 
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IN.2 M Use gigabit or greater networking between platform 
hardware components 

IN.3 S Aggregate distributed physical resources into one, shared 
compute and data resource platform 

IN.4 S Support low latency, parallel processing 

IN.5 C Support long-running services 

IN.6 S The platform should support multiple Infrastructure models - 
bare metal, private cloud, public / hybrid cloud 

 

Table 16 Non-Functional Requirements: Integration 

Integration   

ID Category Description 

IT.1 M Platform is a single platform as far as user is concerned 

IT.2 W Cloud and non-cloud components need to be fully integrated 

IT.3 M An air gap is permissible between the cloud and non-cloud 
components during the project 

IT.4 C The platform should provide integrated application support with 
rich API layer 

 

Table 17 Non-Functional Requirements: Compliance 

Compliance   

ID Category Description 

CO.1 S The platform must comply with accessibility standards such as 
W3C Content Accessibility Guidelines as described in D2.3. 

CO.2 M Personal Information storage must comply with GDPR. 

CO.3 M During the project duration the freedom of Information 
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Table 18 Non-Functional Requirements: Operations 

Operations   

ID Category Description 

OP.1 M SLA (99.99% availability) 

OP.2 M Service levels 

 

5.2 System Implementation 

5.2.1 Components 

The entry point of every user is the dashboard which consists of a frontend and a backend. Depending 
on the role of the authenticated user the dashboard provides different levels of functionality. The 
backend takes care of the user authentication and communication with any data services (DB, 
message broker or filesystem) as well as the information retrieval from the model library. 

The authenticated user is presented with the platform dashboard, an early mock-up of which is 
displayed in Figure 5 that is presented in detail in deliverable D2.1 “Technical Requirements – Solution 
Architecture”9. The dashboard communicates with the model library so that the user’s selections are 
presented properly, the parameters set, and the prerequisites satisfied. As the user initiates a 
simulation (either a single execution or repetitive one) the simulation manager gathers the necessary 
information, sets the environment, and passes the execution to the task scheduler that is going to start 
the execution based on resources availability. To support such functionality, the DDDAS includes an 
API that is developed based on the OpenAPI 3.0 standard (¡Error! No se encuentra el origen de la 
referencia.). In this current form, the API is designed to support the definition of a context entity, the 
setup of a model sequence, the scenario creation, and the interaction with the simulation environment. 
Naturally, it is expected to evolve based on the evolving platform’s needs. 

The real-time data part of the application is based around a distributed event streaming platform. Data 
sources (such as city traffic data, product orders and CO2 levels) are retrieved through a producer-
consumer schema. Such data can be used as input to simulations together with historical data or as 
validation data for simulations that have been already executed. The message broker can also be 
used for the exchange of messages between the platform’s microservices for notifications and more. 

                                                
9 D2.1 “Technical Requirements – Solution Architecture”, LEAD project. 
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Figure 5 Early mock-up of the DDDAS user interface 

The role of the simulation manager is to orchestrate all the data from the model library, the user 
parameters and the input data and define an execution pipeline that will be then sent to the task 
scheduler.  The pipeline stages can vary between different models, but as a basis they consist of: 

● the environment preparation (containerization is encouraged)  
● the cloning of the source code (ideally from a publicly available repository) 
● the retrieval of input data (and storing for later use if necessary) 
● the execution of the model 

Other models though are accessed through an API and not executed in the platform. In that case, the 
simulation manager will package the user input accordingly into a request towards the API. 

The task scheduler provides several potential features to the platform. Tasks can be set to run 
indefinitely in a periodic fashion, the stages, and logs of a currently running task can be monitored 
and a history of previously executed simulations can be viewed. 

Lastly, the platform’s model output data are stored in a distributed file system with naming conventions 
to suit the models’ execution and avoid data duplication. The distributed nature of the file storage 
provides the users with the option to further optimize their models through MapReduce and accelerate 
their results. 

5.3 Simulation Orchestration 

The simulation manager handles the retrieval of the model execution parameters and creates an 
Airflow DAG10 (Directed Acyclic Graph). A DAG is a collection of the tasks that the pipeline needs to 
execute organized in a way that reflects their relationships and dependencies. It is written as Python 

                                                
10 https://airflow.apache.org/docs/apache-airflow/1.10.12/. 
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code and must be placed in a specific folder of Airflow. A DAG describes how a workflow is run and 
an Airflow Operator is the entity that defines what is executed. A variety of Operators exist such as 
BashOperator, PythonOperator, PostgresOperator and more covering a wide range of the models’ 
requirements. For each model in the platform a DAG is generated based on its execution parameters. 
Users’ parameters and input outputs are provided to the DAG dynamically at every execution. 

As an example, a use case from LL3 - Lyon is going to be discussed. It concerns a MATSim11 model 
that consists of a pipeline with multiple stages. First, a large amount of data needs to be available in 
specific locations and in a structured manner. The pipeline then starts with a BashOperator that checks 
the availability of the data in the file system and requests any missing or outdated data from the 
defined sources. Another BashOperator (and therefore a next stage of the pipeline) clones a publicly 
available repository, and a Python environment is created based on a Conda environment YAML12 
file. With the proper Python activated the first model execution starts. The output is stored in a specific 
location. Finally, a last BashOperator clones another repository, configures a Java environment, and 
builds the application with Maven. With the Java environment set the execution then starts using an 
output configuration file from the previous stage. 

Finally, it needs to be stressed that such workflows are dynamic. In the example above, one or more 
steps for future models can be added in the pipeline following the patterns of the DAG. 

 

 

 

 

 

 

 

 

 

 

 

 

                                                
11 https://www.matsim.org/ 
12 https://yaml.org/ 
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Figure 6 DDDAS API 
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6 Conclusion 

LEAD aims to develop a digital twin platform for supporting the optimisation of last mile green logistics 
operations. The deliverable D2.5 describes the design and development of the technological core of 
the LEAD Digital Twin Platform and focuses on the Dynamic Data-Driven Application System that 
orchestrates the data ingestion, the digital models, the simulation and connects the Digital Twin to the 
physical world. 

The LEAD platform is scalable, flexible, and reliable thanks to its building blocks and it is due to 
containerized deployment that is as presented in Section 3.3. It consists of the dashboard that is 
implemented using JavaScript Framework ReactJS for the frontend and a Python Flask for the 
backend. The storage system consists of the file system and a RDBMS while a document and 
timeseries databases are also foreseen. The DDDAS also queries the Model Library (ML) to access 
simulation models’ properties and metadata. The real-time component is based on Apache Kafka 
distributed event streaming platform ingesting the incoming streaming data and supporting a wide 
variety of simulation models and LL use cases through the inherent flexibility provided by the Kafka 
topics as a storage solution. Furthermore, LL data connectors acting on those topics can perform any 
data pre-processing and augmentation needed. The DDDAS also communicates with the task 
scheduler, based on the Apache Airflow platform, for the orchestration of the simulations’ execution.  

Furthermore, to achieve a successful scenario in DDDAS after selecting the appropriate KPIs and 
models, input rules are important in the form of thresholds to monitor the KPIs evaluation and provide 
useful feedback to the users by publishing JSON messages and potentially visualising the results 
using Grafana. The metadata information of the output of successful scenarios are stored in the 
DataTypes tables of the RDBMS of the platform. 

The technical specifications for the DDDAS are also presented focusing on functional and non-
functional requirements that are crucial to provide a dynamic data driven system that conforms to the 
needs of the project’s partners. The DDDAS outlook regarding the development of its components, its 
connections and technologies is also discussed. To meet the objectives above, we will use 
technologies such as Kafka, SLURM, Apache Airflow etc. Moreover, a topology of architecture and 
DDDAS user interfaces are shown in Section 5.2.1. The role of the simulation manager is pointed out 
that essentially defines an execution pipeline that will be then sent to the task scheduler. DDDAS is 
also connected with simulation orchestration component that handles the retrieval of the model 
execution parameters and creates an Airflow DAG (Directed Acyclic Graph) providing the users’ 
parameters and input outputs dynamically at every execution. 

The LEAD platform is still in an early development phase, therefore the design presented here will be 
enhanced and expanded based on iterative discussions with the project’s partners and incremental 
development of features. Future developments, platform features and design modifications will be 
discussed in the future version D2.6 of this deliverable in M27. 

 

 


