

This project has received funding from the European
Union’s Horizon 2020 research and innovation
programme under grant agreement No 861598.
LEAD is a project under the CIVITAS Initiative. Read
more - civitas.eu

D2.5
LEAD DDDAS System v1

Deliverable number: D2.5
Author(s): Dimitra Politaki, Antonis Mygiakis, Ioanna Fegardiotou
Author’(s’) affiliation (Partner short name): INLE

Ref. Ares(2021)5947826 - 30/09/2021

Page 2 of 39

 D2.5 LEAD DDDAS System v1

This document is issued within the frame and for the purpose of the LEAD project. This project has
received funding from the European Union’s Horizon 2020 research and innovation programme under
Grant Agreement No. 861598.

The views represented in this document only reflect the views of the authors and not the views of the
European Commission. The dissemination of this document reflects only the author’s view and the
European Commission is not responsible for any use that may be made of the information it contains.

Deliverable No. 2.5

Work Package No.
2 Work Package Title

Digital Twin Model and
Simulation Environment

Task No. 2.4 Task Title DDDAS System

Date of preparation of this version: 26/03/2021

Authors:

Dimitra Politaki (INLE)

Ibad Kureshi (INLE)

Ioanna Fergadiotou (INLE)

Antonis Mygiakis (INLE)

Abdelhadi Belfadel (IRTX)

Sebastian Hörl (IRTX)

Rodrigo Tapia (TUDELF)

Ioanna Kourounioti (TUDELF)

Angel Batalla (LMT)

Bråthen Svein (MOLDE)

Nagy Vivien (BKK)

Status (F: final; D: draft; RD: revised draft): F

File Name: DDDAS_D2.5_v0.8.doc

Version: 0.8

Task start date and duration 01/02/2021 – 31/08/2022

Page 3 of 39

 D2.5 LEAD DDDAS System v1

Revision History

Version No. Date Details

0.1 26/03/2021 1st draft version

0.2 20/7/2021 LL3 - Lyon

0.3 25/7/2021 LL2 – The Hague

0.4 24/8/2021 LL1 - Madrid

0.5 27/8/2021 LL5 - Budapest

0.6 01/09/2021 LL4 - Oslo

0.7 02/09/2021 First version for initiating the review process

0.8 22/9/2021 Update after reviews

Reviewers List/

Name Company Date Signature

Jakob Puchinger ISX 20/9/2021

Rodrigo Tapia

Ioanna Kourounioti
TUDELFT 20/9/2021

Page 4 of 39

 D2.5 LEAD DDDAS System v1

Executive Summary

This document describes the LEAD Data-Driven Dynamic Application System (DDDAS), which refers
to the system responsible for the data ingestion and the execution of the simulations of the Digital
Twin (DT) platform. The current document reflects the system’s design decisions by month fifteen
(M15) of the project. The scope of this document is to present the design decisions and an initial
implementation of the DDDAS towards building a scalable, robust, flexible, and reusable platform for
urban logistics operations.

With reference to the deliverable D2.1 “Technical Requirements – Solution Architecture”, LEAD
develops a scalable and robust DT platform for urban logistics operation. The platform is reliable, and
interoperable and based on an open architecture with open software standards, ensuring that privacy
and ethical issues are respected by design. The platform includes ready-to-go integration connectors
for the seamless ingestion of multiple, voluminous, and heterogeneous data-in-motion and data-at-
rest sources. Moreover, the platform supports analytics and efficient complex data driven simulations,
reproducing operational conditions and by managing diverse data sources and the connectors’
provision.

The design of the DDDAS, and by extension the platform, was developed through iterative discussions
and virtual meetings with the Living Lab (LL) stakeholders and the teams designing closely related
systems such as the Model Library (ML). This report includes an in-depth description of the LEAD
platform architecture providing context for the design of the DDDAS. The platform’s high-level
description and design choices are provided to the reader, together with its respective components.
Finally, an initial deployment of the platform is presented, displaying the solutions and the technologies
used.

A very important and critical aspect, for the platform in general but also specifically for the DDDAS, is
the ingestion of data in a scalable and flexible manner that can accommodate the various needs of
the LLs. To that end, a presentation of the data ingested by each LL has been provided, offering the
information needed towards a unification of the data entities that would enable simulation models’
interoperability.

Last, this report focuses on the DDDAS communications with other system components and its role
in defining key performance indicators (KPIs), selecting appropriate models, configuring input data
and parameters, and executing a model’s sequence.

This deliverable consolidates the challenges, specifications, design, and data that have led to the
initial implementation presented. The DDDAS is a dynamic component that evolves together with the
needs of the LLs and the provided simulation models.

Page 5 of 39

 D2.5 LEAD DDDAS System v1

1 Content

2 Introduction ... 9

2.1 Mapping LEAD Outputs .. 9

2.2 Deliverable Overview and Report Structure ...11

3 LEAD Platform ... 12

3.1 High-Level Architecture ...12

3.2 Components ..13

3.3 Deployment ...14

4 Data Pipeline .. 16

4.1 Pipeline Principles ...16

4.2 Data Storage ...16

4.3 Data Ingestion ...16

4.3.1 LL1 - Madrid .. 16

4.3.2 LL2 - The Hague ... 18

4.3.3 LL3 - Lyon ... 18

4.3.4 LL4 - Budapest .. 19

4.3.5 LL5 - Oslo .. 20

4.3.6 LL6 - Porto .. 21

4.4 Data Input Validation ...22

4.5 Input Threshold Monitoring ..23

4.6 Model Result Management ..23

5 Dynamic Data Driven Application System 25

5.1 Technical Specifications ..25

5.1.1 Methodology .. 25

5.1.2 Usage Scenarios ... 27

5.1.3 Actors & Assets ... 28

5.1.4 Functional Requirements ... 29

5.1.5 Non-Functional Requirements ... 32

5.2 System Implementation ...35

5.2.1 Components .. 35

5.3 Simulation Orchestration ...36

6 Conclusion ... 39

Page 6 of 39

 D2.5 LEAD DDDAS System v1

List of Figures
Figure 1 LEAD platform high-level architecture .. 12

Figure 2 An abstract overview of the components of the LEAD platform. ... 13

Figure 3 LEAD platform deployment .. 15

Figure 4 Methodology schema for the definition of the technical requirements 26

Figure 5 Early mock-up of the DDDAS user interface .. 36

List of Tables
Table 1 Adherence to LEAD's Deliverable & Tasks Descriptions ... 9

Table 2 Key requirement categories .. 26

Table 3 DDDAS usage scenarios .. 27

Table 4 DDDAS actors .. 28

Table 5 DDDAS assets .. 28

Table 6 Functional Requirements: Add/Remove data from the platform .. 29

Table 7 Functional Requirements: Pre-processing data ready for analysis 29

Table 8 Functional Requirements: DT Scenario Building ... 30

Table 9 Functional Requirements: Orchestration Models .. 30

Table 10 Functional Requirements: Curating & archiving data .. 31

Table 11 Non-Functional Requirements: Usability ... 32

Table 12 Non-Functional Requirements: Security .. 32

Table 13 Non-Functional Requirements: Information Management ... 33

Table 14 Non-Functional Requirements: Infrastructure .. 33

Table 15 Non-Functional Requirements: Integration .. 34

Table 16 Non-Functional Requirements: Compliance .. 34

Table 17 Non-Functional Requirements: Operations ... 35

Page 7 of 39

 D2.5 LEAD DDDAS System v1

Acronyms

Acronyms Descriptions

ABM Agent Based Model

API Application Programming Interface

BEV Battery Electric Vehicles

CNG Compressed Natural Gas

CI/CD Continuous Integration and Continuous Deployment

CSV Comma Separated Values

DDDAS Data-Driven Dynamic Application System

DSS Decision Support System

DT Digital Twin

EDV Electrical Delivery Vehicle

EV Electric Vehicles

FLP Future Location Prediction

GA Grant Agreement

GDPR General Data Protection Regulation

GTFS General Transit Feed Specification

JSON JavaScript Object Notation

KPI Key Performance Indicator

LEZ Low Emissions Zone

Page 8 of 39

 D2.5 LEAD DDDAS System v1

LL Living Lab

MASS-GT Multi-Agent Simulation System for Goods Transport

MATSim Multi-Agent Transport Simulation

NDA Non-disclosure agreement

RDBMS Relational Database Management System

SLA Service-Level Agreement

UI User Interface

WSZL Waberer's-Szemerey Logisztika Kft

Page 9 of 39

 D2.5 LEAD DDDAS System v1

2 Introduction

In LEAD project, WP2 focuses on the implementation of a digital twin platform that supports decision
making in last-mile logistics operations. To tackle such complex problems, the digital twin can perform
simulations, guide logistics decision making and evaluate its impact.

The objective of the LEAD DDDAS Deliverable is to design and implement the Dynamic Data-Driven
Application System (DDDAS). The DDDAS has a special role for the LEAD platform. It is orchestrating
the data ingestion, the digital models, the simulation, and optimisation environment as well as the
connection between the Digital Twin and the physical world. It is a core component that contains a
large portion of the features that a Digital Twin platform encompasses.

2.1 Mapping LEAD Outputs

This deliverable is based on the commitments made on LEAD’s Grant Agreement. In the following, a
mapping between these commitments, as described in the Deliverable and the Tasks, and the
project’s respective outputs and work performed is presented. A list of the deliverable’s components
and task description together with the corresponding chapter of this report that discusses the approach
that was followed and work that has been carried out can be seen on Table 1.

Table 1 Adherence to LEAD's Deliverable & Tasks Descriptions

LEAD GA Component Document chapters & Justification

DELIVERABLE

D2.4 DDDAS

Initial prototype of the DDDAS system with
(i) the data handling pipeline to enrich and
validate streaming data,
(ii) unification of datasets from different LLs,
(iii) orchestration of models and data.

The deliverable focuses on the design and
implementation of the DDDAS component of the
LEAD platform.

Initially, the platform architecture is presented to
provide a foundation for the system’s description.

Then, the data management and storage principles
of the DDDAS system are discussed along with
separate cases for each LL and their connections
to the meta-model.

Finally, the system’s specifications along with the
initial deployment and its orchestration are
provided to the reader.

TASKS

ST2.4.1: Data Handling Pipeline In Chapter 3 the overall LEAD architecture is
presented, overviewing the general data handling
approach of the platform. Furthermore, in Section

Page 10 of 39

 D2.5 LEAD DDDAS System v1

Using the API’s designed by the previous task this
sub-task ingests the data from external systems,
performs data clean up, validation, and where
possible data augmentation and fusion.

In a dynamic Big Data environment data validation
is critical and complex task. This pipeline then
either stores data for future use (batch or micro-
batch), uses it to validate the scenarios where
ground truth is missing (i.e., based on the following
set of conditions what was the outcome?), or pass
it on to the DDDAS sub-system for immediate use.

0, information regarding the data ingestion pipeline
for each LL is presented. It covers the data pre-
processing, augmentation, and thresholding
validation.

Moreover, sections 4.4, 4.5, and 4.6 further
analyse the management and validation of the
input data, thresholds while also presents the
management of the results from the execution of
the simulation models.

ST2.4.2 Dynamic Data-Driven Application
Systems

Once the scenarios have been programmed using
the visual interfaces, the DDDAS system manages
the simulation process by provisioning
computational hardware, initializing the models
and managing outputs.

The key complexity in this task is temporal and
change management. Temporal complexity comes
from either different simulation horizon
requirements (i.e., real-time, short, medium- or
long-term predictions) or simulation execution
timescales (i.e., the combination of models for
each possible outcome may take different times to
execute).

The DDDAS system also needs to continue to
monitor the Data Pipeline and make decisions on
whether simulation outcomes will be relevant or
not. A drastic change in ground realities may make
a simulation run moot and may require re-
initialisation, alternatively the DDDAS can choose
to spool up parallel simulations and then using
future real-time data validate whether the
outcomes were significantly affected using the
validation data.

Chapter 5 covers aspects of the DDDAS design
and implementation. First, methodology for
defining the specifications, the key actors of the
system and the functional and non-functional
requirements are set (5.1).

These sections cover the functional, non-
functional, design, and component analysis of the
DDDAS.

Since the models from the LLs are not yet ready for
execution in the platform, temporal challenges are
going to be addressed in Period 2 of the project, as
the complexity of the LL representation will have
evolved and further models will have been added
to the Model Library.

Finally, an early overview of the threshold
management for the LEAD MVP is reported in this
deliverable. Further work will be carried out once
the LLs are operational and capable to refine this
functionality. This will be reported in D2.6 (M27).

Page 11 of 39

 D2.5 LEAD DDDAS System v1

2.2 Deliverable Overview and Report Structure

This report presents an in-depth description of the LEAD’s Dynamic Data-Driven Application System
(DDDAS), its design and architecture, how it interfaces with the physical world and within the LEAD
platform as well as the dashboards it offers to the user.

In Chapter 3 the overall LEAD architecture is presented. It offers to the reader a crucial knowledge
foundation for better understanding of the DDDAS. Then, in Chapter 4 the data ingestion pipelines
are analysed separately for each LL’s case. The DDDAS is then discussed (Chapter 5); the
specifications of the system, its actors and requirements are initially presented while the architecture,
components and implementation follow giving a thorough description of the system to the reader.

Finally, a conclusion (Chapter 6) summarizes the information provided in the deliverable while also
presenting an outlook of the DDDAS in the context of the overall project.

Page 12 of 39

 D2.5 LEAD DDDAS System v1

3 LEAD Platform

In the following sections, an overview of the LEAD platform architecture is going to be presented. The
DDDAS central to the overall platform’s design since it is the starting point where simulations are
configured, and the data inputs and model parameters are set.

3.1 High-Level Architecture

The LEAD platform’s purpose is to provide the infrastructure where the models can be executed
towards building a complete digital twin, serving the needs and use cases of the LLs. As displayed in
¡Error! No se encuentra el origen de la referencia., data should be ingested from the physical world
into the platform through APIs, established IoT sensors’ protocols or in a different fashion as defined
by the availability and accessibility of the operational data.

Figure 1 LEAD platform high-level architecture

The DDDAS is responsible to build the context entities describing the physical world but also
communicate with the Model Library to connect those entities with available models. The DDDAS also
manages the scenario creation and the simulation orchestration, making any outputs available to the
DSS. The communication of the DDDAS and DSS concerns the results of a simulation. The DSS is
designed to identify the best-case scenarios through cognitive methods and present this output to the

Page 13 of 39

 D2.5 LEAD DDDAS System v1

user. Both the DDDAS and DSS communicate with a dashboard that accepts all user inputs and
provides access to the storage infrastructure of the platform.

3.2 Components

The LEAD platform has been designed in a modular fashion so that it accommodates a wide range of
requirements that emerge from the various use cases of the LLs. Such use cases involve
investigations regarding a single definitive business decision while others concern repetitive
simulations with changing parameters on real time and historical data.

Thus, the DDDAS has been designed to use multiple systems for data ingestion to accommodate
different data scenarios, such as message brokers for streaming data, a distributed file system for
large static or nearly static data, big data stores such as Hadoop, etc. Additionally, the system is
expected to run a variety of models developed by different partners and using different technologies.

Figure 2 An abstract overview of the DDDAS-related components.

An abstract overview of the DDDAS-related components is presented in Figure 2. The user interface
component is the main interaction point of the platform with the user. The dashboard exposes
functionality that is integrated into the DDDAS and DSS. From there, the user can browse through the
available KPIs and configure a scenario; that includes providing a model sequence along with input

Page 14 of 39

 D2.5 LEAD DDDAS System v1

parameters and associated datasets. Therefore, the simulation management component of the
DDDAS along with the Model Library guide the user through the scenario creation together with
appropriate and user-friendly frontend elements. Additionally, the simulation manager accesses and
retrieves any information necessary from the storage infrastructure consisting of the filesystem, the
databases, and a message broker. After the submission of a scenario the simulation manager
communicates with the task scheduler to orchestrate the simulation’s execution. After a scenario
simulation execution, the simulation manager is notified and handles the storing and indexing of the
results to the appropriate storage resources.

3.3 Deployment

With references to the criteria and solution analysis presented in the deliverable D2.1 “Technical
Requirements – Solution Architecture” 1, we choose for the LEAD platform the following technologies.
As an initial step, the platform is hosted on a single server and can be scaled as needed. It is also
deployed with CI/CD procedures and all microservices are containerized. The dashboard’s frontend
is implemented using the popular JavaScript framework ReactJS2 while the backend is based on
Python Flask3. A Relational Database Management System (RDBMS) in the form of PostgreSQL4 is
chosen. A document-based database along with an in-memory data structure is also possible to be
provided depending on the use cases and the performance achieved.

Apache Kafka5 is a well-established open-source event streaming platform that is often preferred for
applications with real time data. Kafka topics are therefore used for data storage, and they can be
distributed to other platforms through Kafka Connect in a scalable and reliable manner. Kafka Connect
imports data from any external source – called Source connector – and exports data to any external
system – called Sink connector- offering the flexibility of changing data source/export system at any
time in the future without changing the stream processing code. The Kafka cluster is administered by
a Zookeeper6; this service keeps track of the cluster’s metadata, such as the nodes, topics, partitions
and so on.

Another platform under the Apache Foundation has been selected as a task scheduler. Apache
Airflow7 is a platform to programmatically author, schedule and monitor workflows. Comes pre-loaded
with features that provide dynamicity and extensibility to the platform’s model execution. It also offers
an elegant UI that will be used for monitoring the execution pipelines. Finally, the machine's resources
along with metrics from the Kafka subsystem and the storage infrastructure are monitored through
Prometheus exporters. The collected data can then be visualized with dedicated dashboards
(Grafana, Prometheus) in a variety of different graphs and with alerting functionality built in.

1 D2.1 “Technical Requirements – Solution Architecture”, LEAD project
2 https://reactjs.org/
3 https://flask.palletsprojects.com/en/2.0.x/
4 https://www.askpython.com/python-modules/flask/flask-postgresql
5 https://kafka.apache.org/
6 https://zookeeper.apache.org/
7 https://airflow.apache.org/

Page 15 of 39

 D2.5 LEAD DDDAS System v1

Figure 3 LEAD platform deployment

Page 16 of 39

 D2.5 LEAD DDDAS System v1

4 Data Pipeline

4.1 Pipeline Principles

To ensure reproducibility of the platform, all component installations have been automated and
scripted. These scripts are managed by a version control system and are part of a Continuous
Integration and Continuous Deployment pipeline (CI/CD). This pipeline will monitor the code
repositories of the various components and any changes will trigger re-testing and operator instructed
redeployment of the platform. In terms of system functionality, the next phase of the platform
development will focus on ingesting more data sources and integrating them with the higher layers of
the architecture, e.g., Dashboard. As more data are integrated into the system and more analysis is
performed, the requirements and expectations of the underlying system will evolve. This task will adopt
an agile approach in dealing with change requests.

Kafka topics are used for a variety of tasks in the context of the DDDAS system. Firstly, they are the
main point of reference for the physical-world real-time data. The data ingestion to the Kafka topics
will be visualized with a platform (e.g., Grafana8) so that the data rate, volumetrics and availability for
each LL can be precisely defined and monitored. Moreover, the incoming real-world data can be used
in conjunction with historical data for the simulations but also as a validation measure on the output
of a simulation, provided that the models allow for such input. Furthermore, specific topics can pass
information to the dashboard together with the scheduler API so that the user is updated on the status
of the simulations that are being executed. In addition, information regarding the simulation execution
history and in cases output data will be stored in Kafka topics.

4.2 Data Storage

As previously mentioned, the Apache Kafka distributed event streaming platform is mainly used for
the storage of the incoming streaming data. It is used because of its reliability and scalability, but also
for the flexibility it provides to share the data with other data storage solutions through Kafka-Connect.
Since the DDDAS platform is made to support the execution of models that are developed using a
wide variety of technologies and for different cases, the potential to seamlessly provide the data to a
variety of storage solutions is of uttermost value and importance. As a result, the Kafka topics, a
RDBMS and a time series database are provided as out-of-the-box storage solutions that can be
expanded based on the needs of the LLs and their models.

4.3 Data Ingestion

4.3.1 LL1 - Madrid

4.3.1.1 Data Connectors
In Madrid LL, the three different data types, as defined in deliverable D2.3, are 1) Vehicle information,
2) Service information, and 3) Settings information. As the LL scenario is a totally new initiative, there

8 https://grafana.com/

Page 17 of 39

 D2.5 LEAD DDDAS System v1

is no historical data currently available. Data will be provided by CLOGIN and PAN, in Excel files (xlsx,
csv). These files will be uploaded to the server using File Transfer Protocol (FTP) and stored in
appropriate data structures such as document and time-series databases. Before the platform extracts
data from it, pre-processing and augmentation of the data is required, as described in Section 4.3.1.2.
To simulate Madrid use cases and scenarios, data are received through the Kafka platform and stored
to dedicated (Kafka) topics, each topic corresponds to each data type - 3 in total for Madrid LL - while
an extra topic is used to contain with all the data types merged information as described in Section
4.3.1.2. Moreover, the Kafka producers ingesting the data are responsible for any data conversion
needed by the data consumers of each model. Kafka producers that can be manually executed on
historical data are also implemented to support different use cases. During the simulation execution,
model consumers use the necessary data from the available sources.

4.3.1.2 Data Pre-Processing & Augmentation
In Madrid LL, data pre-processing and augmentation are crucial to developing specific models for
routing optimization on current and the new scenarios. To extract general data characteristics such
as how many clients and answer important questions for developing LL models such as how many
deliveries in a given time window on each of the five postal codes of Madrid LEZ, delivery time period,
number of deliveries per day of week/month/year and more, data should be enriched with some extra
information. The initial data are provided in Excel files as mentioned in Section 4.3.1.1 and the extra
information is stored initially as extra columns to them. For data pre-processing and augmentation,
Python and specifically the pandas library is used and therefore data are stored in DataFrame objects,
that is 2-dimensional labelled data structures with columns of potentially different features/indicators
offering a great level of functionality for further data analysis.

A fundamental source of information to be fed into the Madrid route optimization models is the delivery
addresses dataset that must be expressed in latitude and longitude coordinates (stored in 2 new
columns of the delivery data frame with labels delivery latitude, and delivery longitude respectively).
Moreover, aiming at computing statistical characteristics at the pre-processing stage is needed to split
delivery date to day, month, and year respectively and save them to separate columns of the order
data frame and convert date to day of the year using among others the datetime python package. All
the information regarding orders, deliveries, fleet, and settings are then merged to one data frame and
potentially to one Excel/csv file based on a common field. The common field between order and fleet
data frames is the waybill number.

4.3.1.3 Data Stream Meta Extraction
As previously mentioned, the Madrid LL data are provided as Excel files and after the data pre-
processing and augmentation stage, they are stored in 3 different Kafka topics. Each Excel file or
Kafka topic has its own features/characteristics that can be considered as metadata for data
extraction. During the execution of a simulation, these files are retrieved based on conditions, and this
procedure can be documented and stored in the document-oriented database. Metadata from data
streams can also be meta extracted if needed based on scenarios and user requirements that are
defined through the user dashboard.

Page 18 of 39

 D2.5 LEAD DDDAS System v1

4.3.2 LL2 - The Hague

The Hague LL aims to explore the interactions of different delivery methods for parcel distribution. The
LL will model crowd shipping solution as well as the integration of the various delivery methods into
one platform. The platform includes the interactions with other logistical and technological small and
medium enterprises. Using MATSim, MASS-GT and network models, it is expected to investigate their
impact to the parcel delivery efficiency.

4.3.2.1 Data Connectors
In its current version, the DT modelling of the LL has 6 static datasets, as described in deliverable 2.3.
The details on the mechanisms, protocols and storage of this data are still being defined and they will
be available in the next months. The zonal data and parcel nodes data are delivered in shape files.
The parcel demand, delivery time of parcels, activity-based data and vehicle data are tables that will
be provided in an Excel file or CSV format. More data sources are expected to be included in future
versions of the DT; it is yet to be confirmed by the LL’s partners.

4.3.2.2 Data Pre-Processing & Augmentation
The data processing and augmentation is done within the models and data format is presented in
D2.3. Once new data streams will be identified, the pre-processing and augmentation processes will
be enhanced accordingly.

4.3.2.3 Data Stream Meta Extraction
As mentioned in section 4.3.2.1, The Hague LL data are provided as Excel or CSV files and after the
data pre-processing and augmentation stage, they are stored in 3 different Kafka topics . Each
Excel/CSV file or Kafka topic has its own features/characteristics that can be considered as
metadata for data extraction. For the shapefiles, the metadata can be obtained in a XML format.
During the execution of a simulation, these files are retrieved based on conditions, and this
procedure can be documented and stored in the document-oriented database. Metadata from data
streams can also be meta extracted if needed based on scenarios and user requirements that are
defined through the user dashboard.

4.3.3 LL3 - Lyon

In the Lyon LL a consolidation hub will support the local last mile operations within the district whilst
the LEAD platform will be used for exploring the impact of alternative delivery modes on various socio-
economic KPIs.

4.3.3.1 Data Connectors
The data to be collected include traffic data from Grand Lyon Métropole (open dataset) together with
historical socioeconomic and logistics data. Another set of data is to be provided by the operators
involved in the experimentations of the LL, concerning existing operation indicators on other sites and
local indicators once the LL is implemented (parcel’s types and volumes, vehicles, origins, and
destination). All these data will be provided under .csv format and stored in IRT SystemX servers to
be executed by the simulation models to populate the scenarios.

Page 19 of 39

 D2.5 LEAD DDDAS System v1

Data will be generated by local video cameras to supervise the local logistics traffic. Data will be stored
in a dedicated IRT SystemX server to ensure GDPR compliance before adequate processing
(anonymization).

4.3.3.2 Data Pre-Processing & Augmentation
Rough data will be pre-processed to generate the actual characteristics of logistics operation at LL
level and beyond (customers, volumes, requests, operations). Historical socioeconomic, logistics and
traffic data will be extracted to generate a synthetic population and elaborate the distribution scenarios
(as-is and to-be) relevant for the LL.

Video data will be processed through image recognition algorithms to determine the share of logistics
vehicles in the global traffic flow. These treatments will support the generation of a range of new KPI
illustrating the contribution of logistics operations in the global traffic and its timely tendencies.

4.3.3.3 Data Stream Meta Extraction
Different datasets will be established: logistics and socioeconomics data will be stored in different
containers than video data, due to GDPR requirements. Processed information extracted from video
data could be stored into the main dataset. Each specific folder could be considered as metadata for
extraction as requested for simulations. Data stream can be extracted if needed using specific
metadata based on scenarios/user requirements elaborated in the simulation.

4.3.4 LL4 - Budapest

Budapest LL aims to investigate the effects of WSZL deliveries to public transportation with use of
micro hubs. The first goal is to define the possible locations of the micro hub in connection with the
zones, which need developments. Secondly, we focus on using dedicated time windows for delivering
to local shops. At last, we are investigating the effects of different vehicle types.

4.3.4.1 Data Connectors
In Budapest, the different data types are defined in Deliverable 2.3 like 1) store information, 2) mini-
hub information, 3) fleet information, 4) origin destination information and 5) order information. All
currently available data are historical and provided by WSZL in Excel files. These files are uploaded
to a server using File Transfer Protocol (FTP) and stored in appropriate data structures such as
document and time-series databases. Before the platform extracts data from them, data pre-
processing and augmentation needed as described in Section 4.3.4.2. To simulate Budapest use
cases and scenarios, data are received through the Kafka platform and stored to dedicated (Kafka)
topics, each topic corresponds to each data type - 5 in total for Budapest LL and an extra topic with
all the data types merged as described in Section 4.3.4.2. Moreover, the Kafka producers ingesting
the data are responsible for any data conversion that is needed by the data consumers of each model.
Kafka producers that can be manually executed on historical data are also implemented to support
different use cases. During the simulation execution, model consumers use the necessary data from
the available sources.

4.3.4.2 Data Pre-Processing & Augmentation
In Budapest LL, data pre-processing and augmentation are crucial to develop specific models both
for routing optimization, rescheduling, and managing the delivery time period. To extract data general
characteristics such as how many orders per client in a given time window, those zip codes of the

Page 20 of 39

 D2.5 LEAD DDDAS System v1

stores and mini-hub in Budapest, that will be delivered by WSZL. The WSZL will provide Excel files
with information such as the type and capacity of the vehicles, the vehicle quantity of their fleet and
the working time of the vehicles’ drivers. Moreover, WSZL will give information about the orders such
as delivery date, time-window, unloading time and order quantity as mentioned in Section 4.3.4.1.
BKK will provide the Macroscopic Transport Model of Budapest for the DT with the static traffic data
(the origin-destination matrices will be fixed except the freight layer) and territorial data. Thus, in the
Budapest case, we have 5 different data frames that correspond to 5 different data types that are
mentioned in Section 4.3.4.1.

Very important information for the Budapest model are the stores’ and mini-hub’s addresses, which
will be expressed in geolocation format (latitude, longitude), using the database provided by WSZL.
We then merge order, fleet, mini-hub and store information to one data frame and potentially to one
Excel/csv file based on a common field.

4.3.4.3 Data Stream Meta Extraction
In Budapest LL, as mentioned in Section 4.3.4.1 the different types of data are in Excel files and after
a data pre-processing and augmentation, they are stored in 5 different WSZL Kafka topics. Each
Excel/file or Kafka topic has its own features/characteristics that can be considered as metadata for
data extraction. Each time during the simulation, these files are retrieved based on requirements, and
this procedure can be documented and stored in the document-oriented database. Data stream can
be meta extracted if needed using specific metadata based on scenarios/user requirements that are
defined via the user dashboard and/or API.

4.3.5 LL5 - Oslo

Oslo LL aims at testing four scenarios for NIMBER's B2C home deliveries of larger products from
IKEA furniture superstore in a stepwise refinement from dedicated vans and direct deliveries to
deliveries via a micro hub through crowd-shipping and, finally, with additional suppliers, adjacent to
IKEA, from NIMBER’s business customers database. These scenarios will, wholly/partly, use e-
vehicles. At this stage, the descriptions that follow may be subjected to changes.

4.3.5.1 Data Connectors
In Oslo LL, the 3 different data types as defined in Deliverable 2.3 are 1) store information, 2) trip
information and 3) order information. All currently available data are historical and provided by
NIMBER in Excel files or other appropriate formats. These files are uploaded to a server using File
Transfer Protocol (FTP) and stored in appropriate data structures such as document and time-series
databases. Preliminary to platform extracting data from them, one must pre-process and augment
them according to the procedures illustrated in Section 4.3.5.2. To simulate Oslo use cases and
scenarios, data are received through the Kafka platform and stored to dedicated Kafka topics, each
topic corresponds to each data type - 3 in total for Oslo LL and an extra topic with all the data types
merged as described in Section 4.3.5.2. Moreover, the Kafka producers ingesting the data are
responsible for any data conversion that is needed by the data consumers of each model. Kafka
producers that can be manually executed on historical data are also implemented to support different
use cases. During the simulation execution, model consumers use the necessary data from the
available sources.

Page 21 of 39

 D2.5 LEAD DDDAS System v1

4.3.5.2 Data Pre-Processing & Augmentation
In Oslo LL, data pre-processing and augmentation are crucial to developing specific models to test
the viability of each scenario with respect to the given KPIs. Extracting data/information with respect
to general characteristics such as the number and features of orders/customers, the routing of the
deliveries with/without the micro hub, the number of bringers and their vehicle types, fuel types, kms
driven etc., implies referring to the data provided in Excel files as mentioned in Section 4.3.5.1. For
data pre-processing and augmentation, adequate software like e.g., Python is applied, and data are
stored in convenient data structures with columns/records containing the relevant features/indicators.
Hence, in the Oslo case, we have 3 different data structures that correspond to 3 different data types
that are mentioned in Section 4.3.5.1.

One of the most important information that should be extracted for the Oslo models is the origin and
destination addresses to be reported in geolocation format (latitude, longitude), using Google Maps
Platform and specifically Google Key APIs. The order and delivery latitude and longitude coordinates
are stored with labels order latitude, order longitude, delivery latitude, and delivery longitude
respectively. Moreover, aiming at computing statistical characteristics at the pre-processing stage one
needs to split both order and delivery date to day, month, and year granularity respectively and save
them to separate columns of the order data frame and convert date to day of the year using, among
others, the datetime python package. We then merge store, trip, and order information to one data
frame and potentially to one Excel/csv file based on a common field. The common field between store,
trip and order data frames is the order id.

4.3.5.3 Data Stream Meta Extraction
In Oslo LL, as mentioned in Section 4.3.5.1 the different types of data are in Excel files or similar and
after a data pre-processing and augmentation, they are stored in 3 different NIMBER Kafka topics.
Each Excel/file or Kafka topic has its own features/characteristics that can be considered as metadata
for data extraction. Each time during the simulation, these files are retrieved based on requirements,
and this procedure can be documented and stored in the document-oriented database. Data stream
can be meta extracted if needed using specific metadata based on scenarios/user requirements that
are defined via the user dashboard and/or API.

4.3.6 LL6 - Porto

Porto LL aims at transforming SONAE's deliveries towards electric mobility and at optimizing its fleet
operations. The first goal is to position the EDV charging stations to SONAE's stores by considering
some parameters such as vehicle type, delivery lead time, distance travelled, traffic, frequency, and
duration of EV stop. Secondly, we focus on routing optimization and rescheduling orders finding
alternative shortest paths.

4.3.6.1 Data Connectors
In Porto LL, the 4 different data types as defined in Deliverable 2.3 are 1) store information, 2) charging
station information, 3) fleet information and 4) order information. All currently available data are
historical and provided by SONAE in Excel files. These files are uploaded to a server using File
Transfer Protocol (FTP) and stored in appropriate data structures such as document and time-series
databases. Before the platform extracts data from them, data pre-processing and augmentation
needed as described in Section 4.3.6.2. To simulate Porto use cases and scenarios, data are received

Page 22 of 39

 D2.5 LEAD DDDAS System v1

through the Kafka platform and stored to dedicated (Kafka) topics, each topic corresponds to each
data type - 4 in total for Porto LL and an extra topic with all the data types merged as described in
Section 4.3.6.2. Moreover, the Kafka producers ingesting the data are responsible for any data
conversion that is needed by the data consumers of each model. Kafka producers that can be
manually executed on historical data are also implemented to support different use cases. During the
simulation execution, model consumers use the necessary data from the available sources.

4.3.6.2 Data Pre-Processing & Augmentation
In Porto LL, data pre-processing and augmentation are crucial to developing specific models both for
routing optimization, rescheduling, and location charging stations. To extract data general
characteristics such as how many clients, how many clients and reply important questions for
developing Porto models potentially such as how many orders per client in a given time window, which
are the code postal in Porto that SONAE is delivering, order time period, delivery time period, number
of delivery per day of week/month/year, some extra information should be extracted from data
provided in Excel files as mentioned in Section 4.3.6.1 and stored initially as extra columns to them.
For data pre-processing and augmentation, Python and specifically the Pandas library is used, and
data are stored in data frames, 2-dimensional labelled data structures with columns of potentially
different features/indicators. Hence, in the Porto case, we have 4 different data frames that correspond
to 4 different data types that are mentioned in Section 4.3.6.1.

One of the most important information that should be extracted for the Porto models is the store and
delivery addresses to be expressed in geolocation format (latitude, longitude), using Google Maps
Platform and specifically Google Key APIs. The order and delivery latitude and longitude coordinates
are stored in 4 new columns of the order data frame with labels order latitude, order latitude, delivery
latitude, and delivery longitude respectively. Moreover, aiming at computing statistical characteristics
at the pre-processing stage is needed to split both order and delivery date to day, month, and year
respectively and save them to separate columns of the order data frame and convert date to day of
the year using among others the datetime python package. We then merge order, fleet, and store
information to one data frame and potentially to one Excel/csv file based on a common field. The
common field between order and fleet data frames is the vehicle license of the delivery car and the
common field between store and order data frame is the store id.

4.3.6.3 Data Stream Meta Extraction
In Porto LL, as mentioned in Section 4.3.6.1 the different types of data are in Excel files and after a
data pre-processing and augmentation, they are stored in 4 different SONAE Kafka topics. Each
Excel/file or Kafka topic has its own features/characteristics that can be considered as metadata for
data extraction. Each time during the simulation, these files are retrieved based on requirements, and
this procedure can be documented and stored in the document-oriented database. Data stream can
be meta extracted if needed using specific metadata based on scenarios/user requirements that are
defined via the user dashboard and/or API.

4.4 Data Input Validation

Providing a set of valid data as inputs to the models is a challenging process for the LEAD platform,
since multiple actors have an active role in the development of the models to be executed. Therefore,
a well-defined set of metadata that characterizes all data that are ingested to the platform is needed.

Page 23 of 39

 D2.5 LEAD DDDAS System v1

To that end, when the user is presented with the options to provide input data to a model, based on
its specification as provided by the Model Library, data types are queried across the file system, Kafka
topics, and the available databases. A dedicated DataTypes table in the RDBMS of the platform
handles the management of the available data types and entries are added in cases such as:

 The execution of a scenario that is generating data
 The addition of a data source providing data to a Kafka topic
 An update to the model library

Firstly, static data stored in databases, or the file system have their RDBMS table entries generated
or entered manually. Similarly, every topic that is created for a new data source is accompanied with
its corresponding entry in the DataTypes table. Finally, the description of the data generated by each
model should be provided by the Model Library so that the output data are discovered by the scenario
execution finalization scripts and are properly tagged as new rows to the table. Therefore, a complete
view of the types of the available data can be extracted and data can be provided to the models based
on such properties.

However, the platform only provides such a higher-level approach and several points of caution need
to be addressed by the model owners and the platform’s administrators. The data are provided to the
models with the validation covering aspects of their metadata. This does not involve their internal
structure or content. As such, proper validation, and error handling at runtime by the models is still
essential.

4.5 Input Threshold Monitoring

Following the selection of the KPI and the corresponding model(s), rules regarding a successful
simulation scenario are applied in the form of thresholds. These thresholds are the means to evaluate
the model’s potentials and guide the users towards valuable business insights. Given that a scenario
can be executed multiple times based on the range and step of its input parameters, a proper
monitoring of the KPIs evaluation with regard to the input thresholds can provide useful feedback to
the users.

Such functionality is provided through a dedicated topic of the message broker that publishes JSON
messages concerning the KPI outputs of running scenarios. Such output can also be linked to a
visualization platform such as Grafana for better monitoring experience. Finally, based on the
monitoring output and through the web interface of the Apache Airflow, the user has the ability to act
on the scenario execution pipelines by cancelling one or more steps to save resources or to further
investigate the model execution process through its logs.

4.6 Model Result Management

A final significant part of the scenario execution process is the storage of the results of an executed
scenario in a consistent but flexible manner that would facilitate data sharing across models. The
platform receives a definition of the output that it expects from every model through the specification
provided by the Models Library. At the end of the execution of a model, a set of metadata is stored in
the DataTypes table of the RDBMS of the LEAD platform. Each row contains the metadata of the
output with information such as the output data type, the date of scenario execution, the output path,

Page 24 of 39

 D2.5 LEAD DDDAS System v1

URL or topic, the model and its execution parameters, the user that initiated the scenario and the
execution duration while more can be added as needed.

Flexibility is offered to the model owners to feed the results of their models to several options, such
as the message broker, a database, the file system, or any other requested data storage solution.
Currently, most models are dependent on files as the main input and output method, therefore a
strategy regarding the naming of the directories in a generated standardized and unique manner has
been followed. Further options are investigated considering the future gradual incorporation of real-
time data.

Page 25 of 39

 D2.5 LEAD DDDAS System v1

5 Dynamic Data Driven Application System

5.1 Technical Specifications

5.1.1 Methodology

An overview of the methodology that is used to define the technical requirements for DDDAS is shown
in Figure 4. Four main components have been identified:

1. the usage (business) scenarios,
2. the key actors,
3. the assets,
4. the functional and
5. non-functional requirements.

A key actor is a human that specifies a role played by a user that interacts with the LEAD platform. An
asset is an entity that communicates with/or are used by the platform during the execution or
realization of a use case. Usage (business) scenarios specify a series of actions or events between
an actor and a system to achieve a goal. These goals are based on functional and non-functional
requirements.

Page 26 of 39

 D2.5 LEAD DDDAS System v1

Figure 4 Methodology schema for the definition of the technical requirements

The requirements can be categorised based on their priority as displayed in Table 2. The category
key is then going to be used throughout the tables that define the requirements. The categories
describe the status of the requirements that have been discussed and agreed on by the stakeholders
and will be formed through iterative discussions.

Table 2 Key requirement categories

Category Key Description

MUST M A requirement that must be satisfied for the platform to succeed

SHOULD S A high-priority item that should be included in the platform. Often a critical
requirement which can be satisfied differently if strictly necessary

COULD C A requirement which is considered desirable but not necessary. It will be
included if time and resources permit.

Page 27 of 39

 D2.5 LEAD DDDAS System v1

WON’T W The stakeholders have agreed that the requirement will not be implemented
in the current project but may be considered for the future.

5.1.2 Usage Scenarios

Usage scenarios describe the overall user interactions with the platform. A few usage scenarios
describing functionality to be incorporated in the DDDAS are listed in Table 3.

Table 3 DDDAS usage scenarios

Usage Scenario ID Description

Add/Remove
data from the
platform

A Refers to any activities related to adding or removing data sources from
the platform.

Pre-processing
data ready for
analysis

B Refers to any preparation needed for the analysis of the datasets
(cleansing, normalising, extracting, merging, transforming, loading)

Building Digital
Twin Scenarios

C The activities involved in visualisation and analysis using statistical,
modelling, and AI-based analytics tools and code

Orchestrating
Models

D Refers to creating algorithms and workflows through applications or
programming to transform raw data into statistical results

Curating &
archiving data

E The activities involved in the lifecycle of a trial from the initial brief or
experimental design to the release of data from the trial as complete and
final

Page 28 of 39

 D2.5 LEAD DDDAS System v1

5.1.3 Actors & Assets

A definition of the key actors and assets of the platform have been presented in Section 5.1.1. It
concerns any person or system respectively that has a role interacting with the LEAD platform. The
actors and assets as identified in the current state of the project is listed in Table 4 and Table 5
respectively.

Table 4 DDDAS actors

Actor ID Description

Data Owner DO The person responsible for data curation including classification
according to GDPR and Commercial Sensitivity

Modeller MO The person responsible for constructing or programming analytical
models

Analyst AN The person responsible for designing and running DT scenarios

System
Administrator

SA The person responsible for operational availability of the platform

User Administrator UA The person responsible for user registration and onboarding

Table 5 DDDAS assets

Asset ID Description

WAN WA The wide area network the platform is connected to

LAN LA The local area network associated with the platform

Data pipeline DP Data transport, transformation and storage mechanisms

Packaged
Application

PA Application software used by the platform (e.g., MATSim)

Custom Software CS Scripts and applications of the platform

External System ES Systems external to the platform (e.g., weather, traffic APIs)

Page 29 of 39

 D2.5 LEAD DDDAS System v1

5.1.4 Functional Requirements

Functional requirements generally describe what a system or product must do, providing in detail what
is being requested by the users. The functional requirements are presented in Table 6,Table 7, Table
8, Table 9, Table 10 based on the component they concern along with the key actors, assets, and
their priority category.

Table 6 Functional Requirements: Add/Remove data from the platform

Add/Remove data from the platform

Functional Requirement ID Key Actors
Involved

Assets
Involved

Category

Add data in any agreed format to the
platform

A.1 DO, MO, AN DP M

Provide metadata for every file (e.g.,
sensitivity, keyword and tags, short
description, owner and uploader)

A.2 DO N/A S

Provide volumetric information for
validation purposes

A.3 DO N/A S

Securely add data following the security
and data encryption requirements
documented in D2.3

A.4 DP N/A M

Table 7 Functional Requirements: Pre-processing data ready for analysis

Pre-processing data ready for analysis

Functional Requirement ID Key Actors
Involved

Assets
Involved

Category

Ability to clean data using data cleaning
techniques, tools, and programming
languages (e.g., Excel, Python, R)

C.1 MO, AN DP, PA M

Run classical statistic analytics and
models normalising, extracting features
(feature engineering), transforming data

C.2 MO, AN DP,

 PA

M

Page 30 of 39

 D2.5 LEAD DDDAS System v1

Export reports in a range of formats (e.g.,
pdfs, PPT, Excel) from unattended
techniques and models

C.3 AN WA, LA,
DP, ES

M

Table 8 Functional Requirements: DT Scenario Building

DT Scenario Building

Functional Requirement ID Key Actors
Involved

Assets
Involved

Category

Enable the linking of data sources to
models

C.1 DO, MO, SA, AN DP M

Enable discovery of suitable models C.2 MO ES M

Enable parameterization of models C.3 MO, AN N/A M

Enable the linking of models into a
pipeline

C.4 AN, MO ES M

Automation of model pipeline C.5 MO, ES, AN ES S

Enable support for input thresholding C.6 AN DP M

Interrupt pipeline based on thresholding C.7 N/A N/A C

Table 9 Functional Requirements: Orchestration Models

Orchestrating Models

Functional Requirement ID Key Actors
Involved

Assets
Involved

Category

Ability to create algorithms through
applications

D.1 MO, AN DP, CS,
ES, PA

M

Ability to create workflows through
applications

D.2 MO, AN DP, CS,
ES, PA

M

Page 31 of 39

 D2.5 LEAD DDDAS System v1

Ability to select concerned models D.3 MO, AN DP, CS,
ES, PA

M

Ability to set configuration for simulation D.4 MO, AN ES M

Ability to execute simulation D.5 SA, UA N/A M

Table 10 Functional Requirements: Curating & archiving data

Curating & archiving data

Functional Requirement ID Key Actors
Involved

Assets
involved

Category

Ability to collect data from diverse
sources

E.1 DO, AN, SA WA, LA,
ES, DP,
ES, CS

M

Ability to integrate data into repositories E.2 DO, AN, ES WA, LA,
ES, DP,
ES, CS

M

Ability to capture records and
documents and handle them

E.3 DO, AN WA, LA,
DP, ES

M

Ability to retrieve contextual data
(logistic profile)

E.4 DO, AN, SA WA, LA,
ES, DP,
ES, CS

M

Export reports in a range of formats
(e.g., pdfs, Excel, CSV) from archiving
data

E.5 AN WA, LA,
DP, ES

M

Page 32 of 39

 D2.5 LEAD DDDAS System v1

5.1.5 Non-Functional Requirements

Non-functional requirements concern aspects of usability, security, performance, reliability,
supportability, testability, and maintainability of the DDDAS. The following tables provide a description
of the non-functional requirements based on such aspects along with their priority category.

Table 11 Non-Functional Requirements: Usability

Usability

ID Category Description

US.1 S Custom information screens (e.g., for adding metadata) should be
designed to make user tasks and workflows intuitive and efficient

US.1 M Save analysis and visualization outputs to local drives

US.2 M Record and retain metadata and volumetrics information associated
with a dataset

US.3 M It must be possible to access the platform remotely

US.4 M The platform must be accessible to all project team members

Table 12 Non-Functional Requirements: Security

Security

ID Category Description

SE.1 M Physical security to Tier 1 minimum

SE.2 M Secure access control to the platform

SE.3 S Unified user management for the platform with IP restrictions, and
permission delegation options

SE.4 W Single sign-on

SE.5 M Access to platform must be supported in writing from institutional PIs
(and all other PIs will be informed)

SE.6 M Connection to LEAD intranet will use SSH

SE.7 S Hold all data in an encrypted vault (AES128 min.)

Page 33 of 39

 D2.5 LEAD DDDAS System v1

SE.8 S Offer an encrypted mail drop for the most sensitive information

Table 13 Non-Functional Requirements: Information Management

Information
Management

ID Category Description

IM.1 M All analysis outputs should be checked back into the platform
(even if saved locally)

IM.2 S Outputs are automatically classified based on

Table 14. Status may be changed based on Data Governance
meeting

IM.3 C Support for distributed code repositories

IM.4 M Data should be anonymised and followed the General Data
Protection Regulation (GDPR)

Table 14 Output Combinations

Public

Private

Restricted

Public Public Private Restricted

Private Private Restricted Restricted

Restricted Restricted Restricted Restricted

Table 15 Non-Functional Requirements: Infrastructure

Infrastructure

ID Category Description

IN.1 M Platform must be protected against unauthorised intrusion
and viruses

Page 34 of 39

 D2.5 LEAD DDDAS System v1

IN.2 M Use gigabit or greater networking between platform
hardware components

IN.3 S Aggregate distributed physical resources into one, shared
compute and data resource platform

IN.4 S Support low latency, parallel processing

IN.5 C Support long-running services

IN.6 S The platform should support multiple Infrastructure models -
bare metal, private cloud, public / hybrid cloud

Table 16 Non-Functional Requirements: Integration

Integration

ID Category Description

IT.1 M Platform is a single platform as far as user is concerned

IT.2 W Cloud and non-cloud components need to be fully integrated

IT.3 M An air gap is permissible between the cloud and non-cloud
components during the project

IT.4 C The platform should provide integrated application support with
rich API layer

Table 17 Non-Functional Requirements: Compliance

Compliance

ID Category Description

CO.1 S The platform must comply with accessibility standards such as
W3C Content Accessibility Guidelines as described in D2.3.

CO.2 M Personal Information storage must comply with GDPR.

CO.3 M During the project duration the freedom of Information

Page 35 of 39

 D2.5 LEAD DDDAS System v1

Table 18 Non-Functional Requirements: Operations

Operations

ID Category Description

OP.1 M SLA (99.99% availability)

OP.2 M Service levels

5.2 System Implementation

5.2.1 Components

The entry point of every user is the dashboard which consists of a frontend and a backend. Depending
on the role of the authenticated user the dashboard provides different levels of functionality. The
backend takes care of the user authentication and communication with any data services (DB,
message broker or filesystem) as well as the information retrieval from the model library.

The authenticated user is presented with the platform dashboard, an early mock-up of which is
displayed in Figure 5 that is presented in detail in deliverable D2.1 “Technical Requirements – Solution
Architecture”9. The dashboard communicates with the model library so that the user’s selections are
presented properly, the parameters set, and the prerequisites satisfied. As the user initiates a
simulation (either a single execution or repetitive one) the simulation manager gathers the necessary
information, sets the environment, and passes the execution to the task scheduler that is going to start
the execution based on resources availability. To support such functionality, the DDDAS includes an
API that is developed based on the OpenAPI 3.0 standard (¡Error! No se encuentra el origen de la
referencia.). In this current form, the API is designed to support the definition of a context entity, the
setup of a model sequence, the scenario creation, and the interaction with the simulation environment.
Naturally, it is expected to evolve based on the evolving platform’s needs.

The real-time data part of the application is based around a distributed event streaming platform. Data
sources (such as city traffic data, product orders and CO2 levels) are retrieved through a producer-
consumer schema. Such data can be used as input to simulations together with historical data or as
validation data for simulations that have been already executed. The message broker can also be
used for the exchange of messages between the platform’s microservices for notifications and more.

9 D2.1 “Technical Requirements – Solution Architecture”, LEAD project.

Page 36 of 39

 D2.5 LEAD DDDAS System v1

Figure 5 Early mock-up of the DDDAS user interface

The role of the simulation manager is to orchestrate all the data from the model library, the user
parameters and the input data and define an execution pipeline that will be then sent to the task
scheduler. The pipeline stages can vary between different models, but as a basis they consist of:

● the environment preparation (containerization is encouraged)
● the cloning of the source code (ideally from a publicly available repository)
● the retrieval of input data (and storing for later use if necessary)
● the execution of the model

Other models though are accessed through an API and not executed in the platform. In that case, the
simulation manager will package the user input accordingly into a request towards the API.

The task scheduler provides several potential features to the platform. Tasks can be set to run
indefinitely in a periodic fashion, the stages, and logs of a currently running task can be monitored
and a history of previously executed simulations can be viewed.

Lastly, the platform’s model output data are stored in a distributed file system with naming conventions
to suit the models’ execution and avoid data duplication. The distributed nature of the file storage
provides the users with the option to further optimize their models through MapReduce and accelerate
their results.

5.3 Simulation Orchestration

The simulation manager handles the retrieval of the model execution parameters and creates an
Airflow DAG10 (Directed Acyclic Graph). A DAG is a collection of the tasks that the pipeline needs to
execute organized in a way that reflects their relationships and dependencies. It is written as Python

10 https://airflow.apache.org/docs/apache-airflow/1.10.12/.

Page 37 of 39

 D2.5 LEAD DDDAS System v1

code and must be placed in a specific folder of Airflow. A DAG describes how a workflow is run and
an Airflow Operator is the entity that defines what is executed. A variety of Operators exist such as
BashOperator, PythonOperator, PostgresOperator and more covering a wide range of the models’
requirements. For each model in the platform a DAG is generated based on its execution parameters.
Users’ parameters and input outputs are provided to the DAG dynamically at every execution.

As an example, a use case from LL3 - Lyon is going to be discussed. It concerns a MATSim11 model
that consists of a pipeline with multiple stages. First, a large amount of data needs to be available in
specific locations and in a structured manner. The pipeline then starts with a BashOperator that checks
the availability of the data in the file system and requests any missing or outdated data from the
defined sources. Another BashOperator (and therefore a next stage of the pipeline) clones a publicly
available repository, and a Python environment is created based on a Conda environment YAML12
file. With the proper Python activated the first model execution starts. The output is stored in a specific
location. Finally, a last BashOperator clones another repository, configures a Java environment, and
builds the application with Maven. With the Java environment set the execution then starts using an
output configuration file from the previous stage.

Finally, it needs to be stressed that such workflows are dynamic. In the example above, one or more
steps for future models can be added in the pipeline following the patterns of the DAG.

11 https://www.matsim.org/
12 https://yaml.org/

Page 38 of 39

 D2.5 LEAD DDDAS System v1

Figure 6 DDDAS API

Page 39 of 39

 D2.5 LEAD DDDAS System v1

6 Conclusion

LEAD aims to develop a digital twin platform for supporting the optimisation of last mile green logistics
operations. The deliverable D2.5 describes the design and development of the technological core of
the LEAD Digital Twin Platform and focuses on the Dynamic Data-Driven Application System that
orchestrates the data ingestion, the digital models, the simulation and connects the Digital Twin to the
physical world.

The LEAD platform is scalable, flexible, and reliable thanks to its building blocks and it is due to
containerized deployment that is as presented in Section 3.3. It consists of the dashboard that is
implemented using JavaScript Framework ReactJS for the frontend and a Python Flask for the
backend. The storage system consists of the file system and a RDBMS while a document and
timeseries databases are also foreseen. The DDDAS also queries the Model Library (ML) to access
simulation models’ properties and metadata. The real-time component is based on Apache Kafka
distributed event streaming platform ingesting the incoming streaming data and supporting a wide
variety of simulation models and LL use cases through the inherent flexibility provided by the Kafka
topics as a storage solution. Furthermore, LL data connectors acting on those topics can perform any
data pre-processing and augmentation needed. The DDDAS also communicates with the task
scheduler, based on the Apache Airflow platform, for the orchestration of the simulations’ execution.

Furthermore, to achieve a successful scenario in DDDAS after selecting the appropriate KPIs and
models, input rules are important in the form of thresholds to monitor the KPIs evaluation and provide
useful feedback to the users by publishing JSON messages and potentially visualising the results
using Grafana. The metadata information of the output of successful scenarios are stored in the
DataTypes tables of the RDBMS of the platform.

The technical specifications for the DDDAS are also presented focusing on functional and non-
functional requirements that are crucial to provide a dynamic data driven system that conforms to the
needs of the project’s partners. The DDDAS outlook regarding the development of its components, its
connections and technologies is also discussed. To meet the objectives above, we will use
technologies such as Kafka, SLURM, Apache Airflow etc. Moreover, a topology of architecture and
DDDAS user interfaces are shown in Section 5.2.1. The role of the simulation manager is pointed out
that essentially defines an execution pipeline that will be then sent to the task scheduler. DDDAS is
also connected with simulation orchestration component that handles the retrieval of the model
execution parameters and creates an Airflow DAG (Directed Acyclic Graph) providing the users’
parameters and input outputs dynamically at every execution.

The LEAD platform is still in an early development phase, therefore the design presented here will be
enhanced and expanded based on iterative discussions with the project’s partners and incremental
development of features. Future developments, platform features and design modifications will be
discussed in the future version D2.6 of this deliverable in M27.

