

Technical

Requirements-

Solution

Architecture

Deliverable number: (D.2.1)

Author(s): Abdelhadi Belfadel (ISX), Ibad Kureshi (INLE), Dimitra Politaki (INLE)

Author’(s’) affiliation (Partner short name): ISX, INLE

Ref. Ares(2021)2474643 - 12/04/2021

2

Technical Requirements-Solution Architecture

Deliverable No. 2.1.

Work Package No. 2 Work Package Title TR – Solution Architecture

Task No.
2.1 Task Title

Technical Requirements –

Solution Architecture

Date of preparation of this version: 21/12/2020

Authors:

Abdelhadi Belfadel (ISX)

Ibad Kureshi (INLE)

Dimitra Politaki (INLE)

Status (F: final; D: draft; RD: revised draft): F

File Name: LEAD D2.1.TR–Solution Architecture_1.0.docx

Version: 1.0

Task start date and duration 01/06/2020 – 28/02/2020

This document is issued within the frame and for the purpose of the LEAD project. This project

has received funding from the European Union’s Horizon 2020 research and innovation

programme under Grant Agreement No. 861598.

The views represented in this document only reflect the views of the authors and not the views

of the European Commission. The dissemination of this document reflects only the author’s

view and the European Commission is not responsible for any use that may be made of the

information it contains.

3

Technical Requirements-Solution Architecture

Revision History

Version

No.
Date Details

0.1 21/12/2020 1st draft version (ISX)

0.2 15/02/2021 Technology Architecture section (ISX)

0.3 04/03/2021 Update DDDAS and DSS sections (INLE)

0.4 05/03/2021 Merge content and add missing sections (3.2.3, 4.2.2) (ISX)

0.5 19/03/2021 Addressing reviewers’ comments and improvements (ISX, INLE)

0.6 05/04/2021 Section 1.8 (INLE)

0.7 06/04/2021 Merge ISX and INLE updates – Final Draft (ISX)

1.0 12/04/2021 Update reviewers’ minor observations (ISX) – Final document

Reviewers List

Name Company Date Signature

Angel Batalla LMT 01/02/2021

Rodrigo Tapia TUDELF 01/02/2021

4

Technical Requirements-Solution Architecture

Contents

1. Introduction ... 9

1.1 LEAD project overview ..9

1.2 Deliverable purpose and scope ...9

1.4 Architecture development method ... 11

1.5 Target audience .. 12

1.6 Deliverable context .. 12

1.7 Document Structure .. 13

1.8 Reference standardisation initiatives ... 14

2. Architecture Vision ... 17

2.1 Generic Business Process Model .. 17

2.2 High-level LEAD architecture... 22

2.2.1 Main components description and interactions .. 24

2.2.2 Technical foundation ... 27

3. Business Architecture .. 28

3.1 DDDAS Component .. 32

3.1.1 Targeted behaviour and functionalities .. 32

3.1.2 User stories description ... 34

3.1.3 UI Mock-ups & Sequence diagrams... 38

3.1.3.1 Register new device, edit and list existing devices... 38

3.1.3.2 Get and send information from/to device ... 40

3.1.3.3 Scenario Management (register user case, register what-if scenarios, select

model, select device and, configure device)………………………………………………..41

3.1.3.4 Simulation Configuration Management (set simulation configuration,

orchestrate the application packages, simulate engine and simulate re-orchestration).41

3.1.3.5 Model Management (register model, enter metadata and remove model) 41

3.2 DSS Component ... 45

3.2.1 Targeted behaviour and functionalities .. 45

3.2.2 User stories description ... 46

4. Information System Architecture 49

4.1 DDDAS Component .. 50

4.1.1 Component Interactions description diagram ... 50

4.1.2 Component Interactions definition ... 52

4.1.3 Component Classes and Information Exchanged .. 54

4.1.4 Definition of Solution Building Blocks: Reuse vs Make vs Buy 56

5

Technical Requirements-Solution Architecture

4.2 DSS Component ... 57

4.2.1 Component Interactions description diagram ... 57

4.2.2 Component Classes and Information Exchanged .. 58

4.2.3 Definition of Solution Building Blocks: Reuse vs Make vs Buy 59

4.3 LEAD usage viewpoint .. 59

5. Technology Architecture .. 63

5.1 APIs Definition & Documentation ... 63

5.2 Online Document Reference ... 64

5.3 Online Documentation Updates ... 67

5.4 Privacy and Security Concepts .. 68

5.5 Deployment Diagram ... 68

6. Conclusion ... 70

7. References ... 71

8. Annex A .. 72

9. Annex B .. 81

List of figures

Figure 1 Deliverable (D2.1) dependencies ... 13

Figure 2 LEAD Generic Business Process... 19

Figure 3 Legend of the LEAD Components' Architecture Diagrams 23

Figure 4 High-level LEAD Architecture Diagram .. 24

Figure 5 Business Architecture Artifacts .. 29

Figure 6 Behavior and functionalities artifact ... 31

Figure 7 DDDAS Activities, tasks and stories .. 33

Figure 8 Register a new device Sequence Diagram .. 39

Figure 9 Send/Get information from/to device Sequence Diagram 40

Figure 10 Scenario Management Sequence Diagram ... 42

Figure 11 Simulation Orchestration Sequence Diagram .. 43

6

Technical Requirements-Solution Architecture

Figure 12 Model Management Sequence Diagram .. 44

Figure 13 DDDAS Mock-up .. 44

Figure 14 DSS Activities, tasks and stories. ... 45

Figure 15 DSS UI early mock-up ... 48

Figure 16 DDDAS Interaction Diagram .. 51

Figure 17 DDDAS Components Data Structures ... 55

Figure 18 DSS interaction diagram .. 57

Figure 19 DSS Components Data Structures .. 58

Figure 20 LEAD usage view point - Data ingestion .. 61

Figure 21 LEAD usage view point - Configure what-if scenario ... 61

Figure 22 LEAD usage view point - Simulation configuration & execution 62

Figure 23 LEAD usage view point - Data ingestion - Decision System 62

Figure 24 OpenAPI specification example ... 64

Figure 25 API Description - Component overview ... 66

Figure 26 API endpoint - Get Context Entity .. 67

Figure 27 Legend for the Deployment Diagram ... 69

Figure 28 Deployment Diagram ... 70

List of tables

Table 1 Deliverable’s adherence to LEAD objectives and Work Plan 10

Table 2 Description of the Generic Business Process ... 20

Table 3 LEAD main components' interactions description ... 26

Table 4 User Stories Description ... 34

7

Technical Requirements-Solution Architecture

Table 5 User Stories Description ... 46

Table 6 DDDAS Interactions Description ... 53

Table 7 DDDAS Solution Building Blocks Analysis .. 56

Table 8 DSS Solution Building Blocks Analysis ... 59

Table 9 APIs Description - Online Documentation ... 64

8

Technical Requirements-Solution Architecture

List of acronyms and abbreviations

Acronym /Abbreviation Meaning

ABB Architecture Building Block

DDDAS Dynamic Data-Driven Application System

DSS Decision Support System

DT Digital Twin

GDPR General Data Protection Regulation

KPI Key Performance Indicators

LL Living Labs

LSP Logistics Service Providers

MMT Multimodal Transport

PPP Public-Private Partnerships

SBB Solution Building Block

TLS Transport Layer Security

UML Unified Modeling Language

9

Technical Requirements-Solution Architecture

1. Introduction

1.1 LEAD project overview

LEAD will create Digital Twins of urban logistics networks in six cities, to support

experimentation and decision making with on-demand logistics operations in a public-private

urban setting. Innovative solutions for city logistics will be represented by a set of value case

scenarios that address the requirements of the on-demand economy while aligning competing

interests and creating value for all different stakeholders. Each value case will combine

several measures (LEAD strategies): a) innovative business models, b) agile urban freight

storage and last-mile distribution schemes, c) low-emissions, automated, electric, or hybrid

delivery vehicles, and d) smart logistics solutions.

Cost, environmental and operational efficiencies for value cases will be measured in 6 Living

Labs (LL). Evidence-proven value cases and associated logistics solutions will be delivered

in the form of exploitable Digital Twins, incorporating the models that support adaptation to

different contexts and that provide incentives for PPPs.

The LEAD consortium comprises 22 partners, all of whom are involved in the Living Labs,

supported by 5 international partners for knowledge transfer. This structure incentivizes the

co-creation of solutions by city authorities, logistics industry leaders, start-ups, and research

experts in freight modelling, complex simulation and logistics optimization.

1.2 Deliverable purpose and scope

This report is developed in the context of WP2 - Digital Twin Model and Simulation

Environment which designs and develops the technological core of the LEAD project. The

purpose of this document, D2.1 Technical Requirements – Solution Architecture, is to specify

the architecture of the LEAD digital twinning solution. As such, the deliverable starts with a

reminder of the pertinent outcomes from the Knowledge Base – Reference Models (D1.2),

and LEAD Value Case Scenarios (D1.4). It highlights how the outcomes of those documents

influence the architecture of LEAD. Then, the document describes the LEAD components by

showing the architecture in a graphical way. Based on this, Sections 2 to 5 describe each

LEAD component in a detailed way.

1.3 Addressing the LEAD Description of Action

The following table maps the contents of this document to the requirements of the GA.

10

Technical Requirements-Solution Architecture

Table 1 Deliverable’s adherence to LEAD objectives and Work Plan

LEAD requirements Section of D2.1
addressing LEAD

GA

Comments

D2.1 Technical Requirements - Solution Architecture

System architecture and interfaces considering scalability, elasticity, availability and

connectivity requirements and detailed development plan.

-System architecture considering scalability, elasticity,

availability and connectivity requirements.

-LEAD subsystems and interfacing requirements

-LEAD system components and data flows

2

3

4

5

-Definition of the user interfaces allowing the interaction

of human decision makers with the DDDAS

-Models and algorithms

4.1 Further

detailed in

deliverable

D2.4

-The interfaces between the various system components

as well necessary API for orchestrating the Digital Twin

5.1

-Interfaces between different models

-Data / Sensor interfaces

4.1 Further

detailed in

deliverable

D2.4

-Data Standardization and Data exchange requirements

4

-Detailed development plan 3

-The technical design requirements will take into account

key industry requirements (system security, access

security, data security and cybersecurity)

5

-User interfaces and orchestration interfaces 4.1

4.2

Further

detailed in

deliverable

D2.4

11

Technical Requirements-Solution Architecture

Task 2.1 - Technical Requirements - Solution

Architecture

Subtasks:

ST2.1.1 Consolidation of smart city, transport and last

mile logistics data standardisation and data exchange

requirements. Analysis of existing standards (GTFS,

TRANSMODEL, EuTravel Common Information Model)

and ongoing standardization initiatives.

D1.8

ST2.1.2 Requirements analysis and specification: LEAD

subsystems and interfacing requirements. The technical

design requirements will take into account key industry

requirements such as overall system security (guarding

access to the environment), access security (defining

user roles and their data access along with outlining what

data models and services can use), data security and

cybersecurity (protecting data to internal and external

standards in compliance with regulations), visibility

security (reporting on where data came from, how it is put

together and whom is consuming it). This subtask will

also take into account the infrastructure of business

stakeholders (distributed components) and will conclude

in the specification of:

a) LEAD system components and data flows

b) Data / Sensor interfaces

c) User interfaces and orchestration interfaces

d) Interfaces between models,

e) Models and algorithms

Sections 2-5

1.4 Architecture development method

This architecture work is constructed and consolidated following the TOGAF standard and its

guidelines, which is an open, industry consensus framework for Enterprise Architecture [1].

TOGAF provides an architecture development method and tools for assisting the acceptance

and the production of architecture assets. It is based on an iterative process model supported

by best practices and re-usable set of existing assets.

There are four architecture domains that are commonly accepted as subsets of an overall

architecture work, all of which the TOGAF standard is designed to support.

The Business Architecture defines the business strategy, governance, organization, and key

business processes. The Data Architecture describes the structure of an organization’s

12

Technical Requirements-Solution Architecture

logical and physical data assets and data management resources. The Application

Architecture provides a blueprint for the individual applications to be deployed, their

interactions, and their relationships to the core business processes. And finally, the

Technology Architecture describes the logical software and hardware capabilities that are

required to support the deployment of business, data, and application services; this includes

IT infrastructure, middleware, networks, communications, processing, standards, etc.

As an architecture is a dynamic document throughout a project’s lifecycle, this architecture

development method is conducted in an agile way and can be iterated again to update the

impacted components due to new constraints or requirements. These updates will be clearly

defined in the next deliverables D2.3 Decision support system Interface and APIs, and D2.4

DDDAS (Looping Control) – Sensing – Data ingestion.

1.5 Target audience

This document is public and is aimed at the project partners, individuals in those

organizations, the EU, EU Reviewers, and any individual who wishes to gain insight into the

architecture of the LEAD Platform and the technical related work.

1.6 Deliverable context

This document is one of the cornerstones for establishing the research, and development

baseline for the project. Its relationship to other documents is as follows, noting that some are

used as a basis and others will derive from this document (see Figure 1):

• Knowledge Base – Reference models (D1.2): A report providing the reference guide

for LEAD library of reference models for urban logistics, to be used by the partners to

identify the most suitable model, or combination of models to develop their DTs.

• Communities of Practice setup and Innovation Agenda - Value case scenarios

and validation KPIs (D1.4): Report providing the characterization of the Living Labs

(LL) value case scenarios, and the definition of KPIs to target the impacts of the new

LEAD scenarios based on a combination of different logistics measures.

• Digital Twin Models Library (D2.2): Report providing a set of open-source, case-

specific software applications, for the specified models in D1.2, to be used in future

Digital Twins. Together, these specifications and software become an open library

from which the LL use case scenarios can source to populate their Digital Twins.

13

Technical Requirements-Solution Architecture

• Decision Support System Interface and APIs (D2.3): Report providing the

implementation of the DSS and its related APIs enabling connection to external

systems and inter-module communication for each of the modelling and simulation

components. From a user perspective, this task reports the design of user interfaces

and their related technical components where simulation scenarios can be configured

and executed from.

• DDDAS (Looping Control) - Sensing - Data ingestion (D2.4): Report the

implementation of the DDDAS enabling to ingest data from external systems to internal

LEAD components, monitor data updates from physical twins, and the module that

enables to manage the simulation process and the orchestration of models linked to

the what-if scenario.

Figure 1 Deliverable (D2.1) dependencies

1.7 Document Structure

This deliverable is broken down into the following sections:

• Section 2 (Architecture vision): This first phase ensures that the architecture is

considered as a whole, by creating architecture content by cycling through the

business, information system, and technology architecture. This enables to provide a

14

Technical Requirements-Solution Architecture

big-picture of the targeted LEAD Platform, its main business process, the high-level

architecture, and the implementability of the architecture. This phase helps as well to

converge to a target and refine each level during the next iteration of the architecture

development method.

• Section 3 (Business Architecture): Based on the TOGAF recommendations [1], this

phase enables to identify and analyze the Architecture Building Blocks (ABBs) that

captures the architecture requirements to guide the development of the required

solution building blocks. Each component in LEAD is considered as an ABB,

considering, in the next architecture levels, several concepts such as the business,

data, application, and technology requirements, the fundamental functionality and

attributes (behaviour, interfaces provided, including security aspects), interoperability

(where applicable) and dependence between building blocks.

• Section 4 (Information System Architecture): This architecture level is focusing on

the internal structure of the identified components during the business architecture,

along with the required data structure and component interactions. It enables also to

analyze technically the identified components that should cover the targeted features.

We analyze the different solutions that exist in the market referred to as Solution

Building Block (SBB) to implement the required component. Each SBB will be

evaluated in the form of ‘+++’ and ‘---’ to cover the functionality, parameters, and

security. The more ‘+’, the better a solution will be covering such aspects, while more

‘- ‘, the less likely a solution is going to be selected for reuse. In terms of reusability,

the tool evaluated are ensured to have an open-source and reuse/extend of source

code open enough to allow the exploitation of such tool beyond LEAD.

• Section 5 (Technology Architecture): This last phase enables to define the

communication endpoints of the identified components in the IS Architecture to be

used during the implementation. The focus is on API definitions and common data

models that are provided for LEAD inter-communication, as well as the security

aspects and the infrastructure that supports the LEAD platform.

1.8 Reference standardisation initiatives

The ultimate objective of introducing Digital Twins in last mile logistics is to improve the

operation and efficiency of parcel delivery, reduce costs and externalities through forecasting

and predictions of future states and support advanced decision making through the entire

logistics lifecycle, while also fostering stakeholder participation via reliable real-life

information. Technology enablers for building Digital Twins include modelling, predictive

analytics and decision-making methods, and the use of lifecycle-oriented knowledge with

historical and real-time operational and city data. The LEAD architecture design therefore

15

Technical Requirements-Solution Architecture

considered key standardisation initiatives in logistics, transport data and digital twins to

eventually enable the smooth flow of goods and the collaboration among the stakeholders

across end-to-end logistics and supply networks.

Current standardisation initiatives suggest that LSPs handling the goods on their Seller-to-

Buyer journey should use the same ID Key for the collection of goods despatched by the

Seller as a shipment (in UN/CEFACT and GS1 terminology). That shipment ID Key can easily

be passed down to any stakeholder involved in the journey of the goods. The ID Key may

then be used by all stakeholders to share or retrieve the information necessary to handle the

goods appropriately and to provide tracking information. The International Standards

Organisation provides the standard (ISO 15459-6) intended exactly for that purpose. ISO

15459 ID Keys are unique and unambiguous regardless of the party that issues the ID Keys

and assigns them to a specific object or entity.

More specifically, the United Nations Centre for Trade Facilitation and Electronic Business

(UN/CEFACT) propose a number of recommendations, standards, tools and resources that

can be used to address the immediate and long-term challenges of supply chain and

transportation logistics, also addressing the additional burden posed by the COVID-19

pandemic to facilitate global trade. There are a few UN/CEFACT projects currently active in

related fields (track and trace, transport modal views of MMT directly relevant to last mile

logistics). Relevant UN/CEFACT documents are:

• UN/CEFACT Multi Modal Transport Reference Data Model (UN/CEFACT

SHIP/MMT-RDM) [2].

• UN/CEFACT Buy-Ship-Pay Reference Data Model BSP-RDM Version 1.0 (2019)

[3].

In sequence, a number of UN/CEFACT processes and the related data exchanges and data

elements as described in the UN/CEFACT Reference Data Models (RDMs) are being

considered to align the last mile processes with existing UN/CEFACT standards:

• BOOKING: The booking process involving the booking requests and booking

responses, covers space allocation, transport planning, and service requirements,

and the details that appear in the waybill, and relates to the shipping instruction,

the release of goods, the bill of lading etc.

• SHIPMENTS: The Shipping Instructions will typically follow the Booking from the

Transport Service Buyer to the Transport Service Provider as a pre-cursor to the

issuing of a waybill which then acts as the evidence of the transport contract.

• WAYBILL: The evidence of a contract between the Transport Service Buyer and

the Transport Service Provider, usually issued on collection or receipt by the

Transport Service Provider. The Waybill also shows who has the right of ownership

of the goods being transported.

16

Technical Requirements-Solution Architecture

• REPORT/REQUEST: The status reporting processes cover ad-hoc or contractual

reporting. The tracking of a shipments and goods or transport equipment is

essential to a success of a supply chain operation, accurate and timely status

updates allow the Seller and the Buyer to plan and manage the flow and timing

and minimize the risk of disruption.

In terms of transport data standards, the following are considered:

• The General Transit Feed Specification (GTFS) defines a common format for

public transportation schedules and associated geographic information. GTFS

"feeds" let public transit agencies publish their transit data and developers write

applications that consume that data in an interoperable way [4].

• Transmodel, the CEN European Reference Data model for public transport

information [5], provides an abstract model of common public transport concepts

and data structures that can be used to build many different kinds of public

transport information system, including timetabling, fares, operational

management, real time data, journey planning etc. Transmodel v6 is covering

multimodal Public Transport, including flexible transport and also Demand

Responsive Transport: most of the needs of bus, tramway, light-rail, metro, coach

and long-distance rail are taken into account. The standard has been extended to

cover alternative modes of transport, in particular vehicle sharing, vehicle pooling,

vehicle rental, taxi (CEN TS 17413:2019).

In standards adopted in Digital Twins (DT), the Joint Technical Committee (ISO/IEC JTC 1)

covers many areas including AI, automatic identification and data capture techniques, cloud

computing, data usage, IoT. DTs is also a focus area of IEC Technical Committee 65, which

develops international standards for industrial process measurement, control and automation.

The Digital Twin - Reference Architecture (PWI JTC1-SC41-5) provides a standardized

generic DT Reference Architecture using a common vocabulary, reusable designs and

industry best practices. The document uses a top-down approach, beginning with collecting

the most important characteristics of DT along its life cycle, abstracting those into a generic

DT Conceptual Model, deriving a high-level system-based reference with subsequent

dissection of that model into five architecture views from different perspectives [5]. Modelling

work carried out in Tasks T2.2, T2.3 and T2.4 will build on the aforementioned initiatives and

informed the following sections that present the LEAD project architecture and the key

components of the envisioned platform.

17

Technical Requirements-Solution Architecture

2. Architecture Vision

This phase ensures that the architecture is considered as a whole, by creating architecture

content by cycling through the business, information system, and technology architecture.

This enables to provide a big-picture of the targeted LEAD Platform, its main business

process, the high-level architecture, and the implementability of the architecture. This phase

helps as well to converge to a target and refine each level during the next iteration of the

architecture development method.

2.1 Generic Business Process Model

This section presents and analyses the targeted process by the LLs. To do so, we have first

analyzed each LL value case scenario based on the inputs (description of the context,

together with the actors, territories and companies involved, the main problematics they are

facing and the targeted goals) provided in the deliverable D1.4 (Communities of Practice

setup and Innovation Agenda - Value case scenarios and validation KPIs). Then we identified

the common future workflow that is shared between all the LL value case scenarios.

Figure 2 is the outcome of the discussions occurred during the WP2.1 meetings, and depicts

the generic business process that is designed and aligned with all LLs.

The LEAD generic business process is described below and in detail in Table 2 (from top to

down). For each task, a Who-What-Why format is adopted to first identify the actor or

component that manages or realizes this action. Then a description of the action is realized

in the What, and finally the Why describes the objective or the outcomes of each task.

The first pool (tasks with blue colour) describes the workflow that manages the contextual

information from the physical twins, and keeps the data updated during the whole lifecycle of

the entire process. In addition, it enables to push an updated contextual data (if necessary)

to the linked physical twins, in case a stakeholder needs to update the state of the physical

twin.

The second pool (tasks with yellow colour) describes the workflow that manages the user

tasks. These tasks are translated later on as User Interfaces where a stakeholder chooses a

specific scenario or strategy, with a possibility to configure the model properties of the linked

models before launching the selected scenario.

The third pool (tasks with green colour) describes the workflow managed by the DDDAS. It

receives the selected scenario and model configurations from the user task. Then, sets the

configuration for simulation, receives the required contextual data, initializes the data

monitoring (if applicable) to check data threshold received from physical twins and restart the

18

Technical Requirements-Solution Architecture

simulation if necessary, and finally prepare the execution environment to execute the targeted

simulation.

The fourth and last pool (tasks with purple colour) described the workflow managed by the

DSS. It receives the output of the simulation from the DDDAS as a set of successful scenarios.

Then the decision system selects the best strategies among produced scenarios. Finally, the

stakeholder that has launched the simulation scenario is notified when a generation of a

detailed evaluation report is produced, to compare the produced KPIs with the ones

calculated based on a refreshed contextual data of physical twins.

19

Technical Requirements-Solution Architecture

Figure 2 LEAD Generic Business Process

20

Technical Requirements-Solution Architecture

Table 2 Description of the Generic Business Process

LEAD

Component

/

Stakeholder

Task Description

Data Ingestion

Manager

Get/Update Data from

Physical Twin

Who: Data Ingestion Manager - Device

Manager

What: Manage interaction with

heterogeneous environment of devices

running different protocols

Why: To exchange (get and set) data from

device manager to physical twins

Manage/Expose

Contextual Information

Who: Data Ingestion Manager - Context

Manager

What: Manage interaction with internal

LEAD components

Why: To exchange (get and set) data from

LEAD components to a context manager that

manages contextual information

LEAD

Dashboard

Select

Scenario/Strategy

Who: LEAD Dashboard - LEAD Actor

What: Select what-if scenarios

Why: To select the required models and

their order/sequences for each what-if

scenario

Configure logistic profile

(Model properties)

Who: LEAD Dashboard - LEAD Actor

What: Update model properties linked to the

selected models of the scenario (urban

freight characteristics, logistics needs…)

Why: In case an actor needs to update/set

model characteristics

Start simulation Who: LEAD Dashboard - LEAD Actor

What: Launch the selected what-if scenario

Why: To get the evaluation report

Display evaluation

report

Who: LEAD Dashboard - LEAD Actor

What: Visualize the generated evaluation

report after receiving notification of the

execution of the selected scenario

Why: To manage decisions and deal with

changes

Confirm Strategy Who: LEAD Dashboard - LEAD Actor

21

Technical Requirements-Solution Architecture

What: Confirm the simulation results

Why: To record the results and push new

data to physical twins where needed

DDDAS

Set Configuration for

simulation

Who: DDDAS

What: Set the preferences and new

configurations to scenario models and

system

Why: To update default configuration based

on user inputs (from configure logistic profile

task)

Monitoring Who: DDDAS

What: Monitor data updates from physical

twins

Why: To check data thresholds and reset

simulation execution if needed

Select concerned

Models

Who: DDDAS

What: Select the linked models to the what-if

scenario

Why: To prepare simulation execution

Receive contextual data

(logistic profile)

Who: DDDAS

What: Receive contextual data from physical

twins

Why: To prepare data and model integration

Execute simulation Who: DDDAS

What: Execute simulation

Why: To produce paths to successful

outcomes

DSS

Decision system Who: DSS

What: Select best scenarios among

produced scenarios or predictive models to

make decisions

Why: To select best strategies

Retrieve New KPIs for

comparison

Who: DDDAS

What: Retrieve New KPIs for comparison

Why: To compare produced KPIs with

calculated KPIs by real data of physical

twins

Generation of detailed

evaluation report

Who: DSS

What: Generation of detailed evaluation

report

Why: To generate evaluation report

22

Technical Requirements-Solution Architecture

Send notification to user Who: DSS

What: Send notification to user

Why: To read evaluation report and enable

decision making

2.2 High-level LEAD architecture

Based on the scenario presented in the previous section, the following figures (Figure 3 to

Figure 4) introduce the LEAD High-level Architecture diagram depicting the different LEAD

components together with the major interactions they have as per their descriptions in the

following in Section 2.2.1.

Figure 3 shows the legend for the LEAD architecture diagram of Figure 4. This legend shows

the meaning of the symbols and stereotypes employed in the diagrams. Note that also shown

are both the invocation arrows and the data flows, containing real data that is stored or used

across components. Technical details like HTTP headers or response codes needed for

command-like calls are considered to contain “no data”. For external components related to

the describing component, the narrative focuses only on the external component use and

interaction with the component rather than the internal features of the external component.

The boxes represented in Figure 3 have the following meaning:

• Grey box: This box represents internal modules of each LEAD component

• Green box: This box represents API modules that act as a bridge between the

current component and any LEAD, or external to LEAD, component

• Blue box: This box represents any LEAD component that interacts with the current

component

• : This box represents the user interface of the component.

• Yellow box: This box represents any external component or provider of certain

tasks, e.g. external public API or sensor

23

Technical Requirements-Solution Architecture

Figure 3 Legend of the LEAD Components' Architecture Diagrams

24

Technical Requirements-Solution Architecture

Figure 4 High-level LEAD Architecture Diagram

2.2.1 Main components description and interactions

LEAD platform consists of several components, which are described in this sub-section. The

connections or communications between different components will be performed through

APIs or direct calls inside the same component. The technology foundations as a first and

high-level analysis are described in this section, however, specific technology selections for

the components are decided in later sections.

As previously shown, the high-level architecture of the LEAD platform is depicted in Figure

4, and is composed of the following main components (from top to down):

25

Technical Requirements-Solution Architecture

• Dashboard: A user-friendly dashboard and interface, customizable for each LL to

support logistics or city actors in running feasibility studies and exploring the results of

alternative measures in a workflow-driven manner. The interface allows for the creation

of simulation scenarios with specific win conditions or KPI’s. The interface will allow

the users to link the data sources to the models and define threshold parameters. As

a digital twin, the simulation scenarios will be a pipeline of models (some running in

parallel) feeding information into each other. The dashboard provides KPI metrics for

both the physical and digital world. For the latter, the dashboard will show alignment

of the simulations to actual ground conditions, as well as progress towards value

scenario goals.

• DDDAS: The dynamic data driven application system will operationalize the user

created scenarios by linking the data sources, models, and the simulation

environment. At the first time step the DDDAS will read in and pre-process the data

from the physical world, inject it into the simulation environment where the appropriate

models have been instantiated. Each model is expected to be parameterized and

therefore multiple instances will be created for parallel operation. To accomplish this

the DDDAS will use containerizations, and virtualization to scale the system. At the

end of the execution cycle, it is expected that the DDDAS will produce multiple

predictions of the state of the physical world at the next time step based on the

parameter sweeps of the various models in the scenario pipeline. These predictions

will be sent to the DSS for further selection. For the lifetime of the scenario, the DDDAS

will continue to monitor the data sources at each timestep and depending on

established thresholds re-initiate the simulation scenario pipeline. Depending on the

LL the DDDAS will also monitor and provide metrics to the user about the scenario.

Situations, where the processing time of the simulation exceed the length of the time-

step, will be raised with the user to ensure the DT can perform as close to real time as

possible.

• DSS: The Decision Support System module employs Bayesian inference techniques

to firstly decide which outcome of the simulation scenario is most likely achievable and

addresses the defined scenario KPI’s, and then recommends, to the city operators, the

interventions required in the physical world to achieve the predicted outcome. At each

time step the DSS continues to build its knowledge base of input parameters, model

outputs, predicted outcome, and real-world readings. The later forming labels for the

user interface, making simulation results readable and comprehensive to end-users.

• Simulation Environment: Every model will have its own execution and operational

requirements. The Lead DT platform will use containerization, and virtualization to

dynamically create these execution environments. These ephemeral environments will

be created using the specifications provided by the model library and instantiated only

26

Technical Requirements-Solution Architecture

when required. After execution at each time step these environments will be removed

to conserve resources. Due to the parameterization of the models and temporal

requirement of execution cycles, multiple instances will be dynamically created for

each scenario being evaluated.

• Data & General Storage: This component stores the data managed in the LEAD

Platform. This latter has different needs of data storage, e.g., model library, sensor

data, events (time series), data files, log files or structured data. Each of them has its

own requirements and constraints in terms of velocity of storage and querying, volume

and updateability of the data, consistency or availability. It is not possible to think of a

solution based on a single storage system. As a result, this component will offer several

APIs to get access to several type of storage depending on the requirements and

constraints of each component.

Each component has specific interactions with other LEAD components. However, at this

high-level view, we focus only on the communication between main components. In the later

architecture phases, and for each component, a more detailed interactions inside each main

component are reflected and described.

These interactions are reflected in the form of a table with the following structure (columns):

• Main Component: This column defines the main component

• Needs/Gives: This column represents the following type of interactions:

o Gives: The main component provides the component defined in column “With”

the data described in column “What”

o Needs: The main component needs from the component defined in column

“With” the data described in column “What”

o Needs/Gives: The “What” is exchanged on both directions

• What: This column describes the interaction or the exchanged data

• With: This column points at the component(s) that interacts with the main component

Table 3 LEAD main components' interactions description

Main component Needs/Gives What With

Dashboard Gives User session data DDDAS

Dashboard Gives User requests that

need to be handled

DDDAS

27

Technical Requirements-Solution Architecture

Dashboard Needs/Gives User notification for

displaying report

DSS

DDDAS Needs Definition of input

data sources

Dashboard

DDDAS Needs Definition of model

operating

parameters

Dashboard

DDDAS Needs User defined

scenarios with KPI’s

and operational

thresholds

Dashboard

DDDAS Gives Selection of

scenarios that would

achieve the defined

KPI’s

DSS

DSS Needs All outcomes and

parameters

scenarios

DDDAS, Data

Ingestion Manager –

Context Entity

Manager

DSS Needs KPIs Data Ingestion

Manager - DDDAS

DSS Gives Recommendation on

best parameters to

achieve scenario

KPI’s

Dashboard

2.2.2 Technical foundation

The Cloud Computing side of the LEAD Platform will be based on existing open source

technology. Several cloud solutions exist in the market. The hybrid cloud stack provided by

Cloudify1, can integrate cloud and local environments. Other existing platforms are

OpenStack2, Cloud Foundry3, and Apache CloudStack4. Classical approaches adopt the idea

of deploying full virtual machines (KVM5). Based on the initial design phase, LEAD will follow

1 https://cloudify.co/
2 https://www.openstack.org/
3 https://www.cloudfoundry.org/
4 https://cloudstack.apache.org/
5 https://www.linux-kvm.org/page/Main_Page

28

Technical Requirements-Solution Architecture

a more modern approach by applying containerization techniques like (Docker6,

Kubernetes7).

For the dashboard (end user portal side) implementation, LEAD aim to build this front-end

with open source solution for creating customizable dashboards such as Grafana technology

tools8, that is widely used to compose observability dashboards with metrics, logs, and

application data.

For the DDDAS component, a job scheduler will be employed over Docker/Kubernetes APIs,

with a solution to handle data ingestion such as Kafka 9 backbone, along with an open source

framework for creating and managing digital twins in the IoT such as Eclipse DITTO10 for the

Context Entity Manager. For the DSS component LEAD will employ Bayesian inference

techniques coded in Python. Regarding the Simulation Orchestration Engine, solutions for IT

automation to configure systems, deploy software and orchestrate IT tasks will be considered

such as Ansible11, SLRUM12 and KVM13.

For the Data and General Storage, it will be based on several existing open source

technologies and must cover a very diverse storage need. Different storage will be

considered, for instance, as sensor data can be generated very fast, a traditional database

can reach its limits on processing speed and size quite fast which demands a different

approach for the management of this kind of data. In this case, big data technologies are

proposed to get the necessary speed and scalability. Time series database like InfluxDB14, or

document-oriented database such as MongoDB15 will be used for the storage and querying

of the data.

3. Business Architecture

This section describes the functional specification, and it describes how the LEAD platform

will work from the user’s perspective. As any functional specification, this section does not

deal with the technical aspects on how the software is implemented. Instead, it explains the

features provided by the components, specifying their features and interactions, including

screens, menus, dialogs, etc.

6 https://www.docker.com/
7 https://kubernetes.io/
8 https://grafana.com/
9 https://kafka.apache.org/
10 https://www.eclipse.org/ditto/
11 https://www.ansible.com/
12 https://slurm.schedmd.com/documentation.html
13 https://www.linux-kvm.org/page/Main_Page
14 https://www.influxdata.com/
15 https://www.mongodb.com/

29

Technical Requirements-Solution Architecture

The functional analysis per each component is made from three perspectives (c.f. Figure 5):

• Behaviour and Functionality: Containing a story map with the features and

functionality offered and the user stories that need to be developed to implement that

functionality

• Interaction descriptions: describing for each component the set of interactions that

it has with other LEAD components and users and describing the exchange of

information flows that will be critical for a unified LEAD platform

• UI mock-ups and sequence diagrams: Describing, for each functionality, the

interactions of the component with the user or with other LEAD components

Figure 5 Business Architecture Artifacts

In terms of the behaviour and functionality, story maps describe the functionality on

different levels of aggregation / abstraction. In order to define the story maps interactively,

the online tool “Draw.io” has been used in the preparation of this deliverable. The three

main elements are (see Figure 6):

30

Technical Requirements-Solution Architecture

• Main activity/Component: It provides a coarse definition of the behaviour of the

component.

• Tasks: Activities are divided into tasks, which are features needed to complete an

activity. Tasks are organized from left to right following a logical sequence to

complete the activity. Tasks have related Sequence diagrams designed with UML

(Unified Modeling Language) to support its description.

• Subtasks (User stories): Describe features of an application from the point of view

of the subject who expects the new feature. The subject is not restricted to a LEAD

user and can be any entity with a behaviour, e.g. the component being described,

another component, etc.

User stories follow a standard format: as a *who*, I want *what* so that *why*. This

way, user stories capture in a simple sentence who wants what and how will the

subject benefit from the new feature. To force this format, user stories are written in

a schematic way, just specifying the who, what and why syntactical functions.

User tasks should include acceptance criteria – a checklist that determines when

the user story is considered as done. The acceptance criteria are also expressed

from the point of view of the subject that formulates the user story and provides a

detailed description of the criteria by which user stories should be evaluated and

validated. User Stories have a unique ID per story (US001) in each story map. User

stories are organized in releases in an incremental development plan. Thus, there

are releases defined for the software deliverables of each component (e.g. M15 and

M25).

31

Technical Requirements-Solution Architecture

Figure 6 Behavior and functionalities artifact

This way, the functional specification of each component contains its story map, together

with tables describing each user story.

As mentioned above, in the description of a feature, UML sequence diagrams are used to

depict the interaction between the main classes and external components to the component

under definition. Additionally, when a given functionality is initiated by a user, a UI mock-up

has been provided so that a clear understating of the functionality is achieved. Thus, the

functional specification of each component includes a subsection with the corresponding UI

mock-ups and UML sequence diagrams.

In the next Information System Architecture, the interactions of the component are explained

using a component interaction diagram and detailing the messages exchange through a UML

class diagram.

32

Technical Requirements-Solution Architecture

3.1 DDDAS Component

3.1.1 Targeted behaviour and functionalities

The key role of the DDDAS is orchestrating data ingestion, the digital models, the simulation

and optimisation environment as well as controlling the connection between the Digital Twin

and the physical world environment.

More specifically, the main activities of the DDDAS component are the following:

• Context entity management: Manages the context entity registration, updates and

data retrieval.

• Model Management: Manages the models from the model library.

• Scenario Management: Manages the registration of scenarios, their linked models

and configuration of models.

• Simulation Orchestration Engine Management: Manages the configuration of

simulation and the orchestration of the application packages.

An overview of activities, tasks and stories related to the DDDAS is shown in Figure 7.

33

Technical Requirements-Solution Architecture

Figure 7 DDDAS Activities, tasks and stories

34

Technical Requirements-Solution Architecture

3.1.2 User stories description

The textual description of each user story depicted in Figure 7 is as follows. The user

privileges (admin, user) will be defined in the context of WP3 in collaboration with LL

stakeholders.

Table 4 User Stories Description

User story User story description

DDDASUS001

Register new context

entity and/or devices

Description

Who: Admin of the Dashboard / DDDAS Admin

What: Register a new context entity or device, including all the

metadata and settings needed about this external entity

Why: In order to retrieve contextual information from the

endpoint of this external entity

Acceptance Criteria:

A new context entity with valid metadata and settings, after

which it immediately be accessible to the LEAD components

though its API to retrieve the exposed contextual data

DDDASUS002

Edit Existing Context

Entity/Device

Description

Who: Admin of the Dashboard / DDDAS Admin

What: Edit metadata of a registered device, including the

deletion of this device

Why: In order to provide the possibility to alter the information

about a registered device and its settings

Acceptance Criteria:

After alteration of the settings of a device, the settings

immediately become active. Deletion of a device is removed

without checking the usage of this entity by another LEAD

component

DDDASUS003

List Registered Context

Entity/Devices

Description

Who: Admin of the Dashboard / DDDAS Admin

What: Make a list of registered context entity/devices

Why: In order to provide the possibility to list/see the registered

context entity/devices.

Acceptance Criteria:

35

Technical Requirements-Solution Architecture

Registered Context Entity/Devices list is updated after adding

and/or deleting a context entity/device.

DDDASUS004

Get information from

device

Description

Who: Admin of the Dashboard / DDDAS Admin

What: Get information from the device.

Why: In order to receive information from device.

Acceptance Criteria:

To get information from device, the information should be

existing.

DDDASUS005

Send information to

device

Description

Who: Admin of the Dashboard / DDDAS Admin

What: Send information to device.

Why: In order to transfer information to device.

Acceptance Criteria:

To send information from device, the information should be

existing and a request is required.

DDDASUS006

Register Model

Description

Who: Admin of the Dashboard / DDDAS Admin

What: Register a new model, including all the metadata (e.g.

model parameters) and settings needed about this external

entity.

Why: In order to retrieve model information from the endpoint of

this external entity.

Acceptance Criteria:

A new model with valid settings, after which it immediately be

accessible to the LEAD components though DDDAS API to

retrieve the exposed model data.

DDDASUS007

Enter model metadata

(input, output,

parameters etc.)

Description

Who: Admin of the Dashboard / DDDAS Admin

What: Enter model metadata (input, output, parameters etc)

Why: In order to enter model metadata.

Acceptance Criteria:

36

Technical Requirements-Solution Architecture

Enter model metadata that have been given by Dashboard.

DDDASUS008

Remove Model

Description

Who: Admin of the Dashboard / DDDAS Admin

What: Remove a registered model

Why: In order to remove/delete a registered model that is not

used (anymore).

Acceptance Criteria:

After ensuring that the model is/will not being used by any

current/future scenarios.

DDDASUS009

Register use-case

Description

Who: Admin of the Dashboard / DDDAS Admin

What: Register a use case.

Why: In order to retrieve use-case information from the

endpoint of this external entity.

Acceptance Criteria:

In order to simulate a use case, trying different

models/scenarios, the first step is to register it in the DDDAS

after being defined in the Dashboard.

DDDASUS0010

Register what-if

scenarios

Description

Who: Admin of the Dashboard / DDDAS Admin

What: Register a use case.

Why: In order to retrieve what-if scenarios information from the

endpoint of this external entity.

Acceptance Criteria:

In order to simulate a what-if scenarios, trying different models,

the first step is to register in the DDDAS after being defined in

the Dashboard.

DDDASUS0011

Select Models

Description

Who: Admin of the Dashboard / DDDAS Admin

What: Select Models.

Why: In order to select the appropriate model for each

scenario.

Acceptance Criteria:

The selected models should be first registered.

DDDASUS0012

Configure Models

Description

Who: Admin of the Dashboard / DDDAS Admin

37

Technical Requirements-Solution Architecture

What: Configure Models.

Why: In order to configure models and adapt them for each

user-case/scenario.

Acceptance Criteria:

After configuring a model, the system keeps the last

configuration version.

DDDASUS0013

Select Devices

Description

Who: Admin of the Dashboard / DDDAS Admin

What: Select Devices.

Why: In order to select the appropriate device(s) for each

scenario.

Acceptance Criteria:

We select the appropriate device(s) for scenario if it is needed.

DDDASUS0014

Configure Devices

Description

Who: Admin of the Dashboard / DDDAS Admin

What: Configure device(s).

Why: in order to configure device(s) and use them for each

user-case/scenario.

Acceptance Criteria:

We configure a device if it is not used by any current simulation.

DDDASUS0015

Set Simulation

Configuration

Description

Who: Admin of the Dashboard / DDDAS Admin

What: Set simulation configuration.

Why: In order to set simulation configuration for each user

case/scenario.

Acceptance Criteria:

We configure a simulation if a use-case/what-if scenario is

registered

DDDASUS0016

Simple Simulation

Engine

Description

Who: Admin of the Dashboard / DDDAS Admin

What: Set simulation configuration.

Why: To start the simulation

Acceptance Criteria:

Simulation Engine is configured

DDDASUS0017

Orchestrate the

application packages

Description

Who: Admin of the Dashboard / DDDAS Admin

What: Orchestrate the application packages.

Why: In order to choose the appropriate application packages

needed.

Acceptance Criteria:

Simulation engine is set and application packages registered

38

Technical Requirements-Solution Architecture

DDDASUS0018

Simulation Engine

Description

Who: Admin of the Dashboard / DDDAS Admin

What: Set simulate engine

Why: in order to collect components, features and support

functions that crucial to simulate model.

Acceptance Criteria:

Models are registered and simulation engine configured

DDDASUS0019

Simulation

Reorchestration

Description

Who: Admin of the Dashboard / DDDAS Admin

What: Simulate reorchestration.

Why: in order to orchestrate again application packages and

rerun simulations.

Acceptance Criteria:

Models are registered and simulation engine re-configured

3.1.3 UI Mock-ups & Sequence diagrams

This sub-section shows sequence diagrams and UI mock-ups to clarify the stories sketched

above and the LEAD internal interactions related to them.

3.1.3.1 Register new device, edit and list existing devices

Figure 9 shows the sequence diagram related to the registration of new device, edition of an

existing device, and the retrieval of a list of existing devices, which primarily take place via

the Dashboard.

39

Technical Requirements-Solution Architecture

Figure 8 Register a new device Sequence Diagram

The main steps are:

- Register a new device (DDDASUS001)

- Edit a registered device (DDDASUS002)

- List registered devices (DDDASUS003)

The user interface for the registration of new device is shown as part of the Dashboard

component. It is a basic registration form in which device name, URL, and params are

requested. These details can easily be changed later by means of another interface.

40

Technical Requirements-Solution Architecture

3.1.3.2 Get and send information from/to device

Figure 10 shows the sequence diagram related to send information to device and get

information form the device which take place in Context Entity Management.

The main steps are:

- Send information to device (DDDASUS005)

- Get information to devices (DDDASUS006)

Figure 9 Send/Get information from/to device Sequence Diagram

41

Technical Requirements-Solution Architecture

3.1.3.3 Scenario Management (register user case, register what-if scenarios, select model,

select device and, configure device)

Figure 10 shows the sequence diagram related to register user case, register what-if

scenarios, select model, select device and, configure device which primarily take place in

Dashboard and then in Scenario Management.

The main steps are:

- Register user case (DDDASUS009)

- Register what-if scenarios (DDDASUS010)

- Select model (DDDASUS011)

- Select device (DDDASUS012)

- Configure device (DDDASUS013)

The user interface (see Figure 13) for the registration of user case, what-if scenarios are

shown as part of the Dashboard component. It is a basic registration form in which user case,

what-if scenarios, model and device names, and params are requested.

3.1.3.4 Simulation Configuration Management (set simulation configuration, orchestrate the

application packages, simulate engine and simulate re-orchestration)

Figure 11 shows the sequence diagram related to set simulation configuration, orchestrate

the application packages, simulate engine and simulate re-orchestration.

3.1.3.5 Model Management (register model, enter model metadata and remove model)

Figure 12 shows the sequence diagram related to register model, enter model metadata and

remove model which primarily take place in Dashboard.

The main steps are:

- Register model (DDDASUS6)

- Enter model metadata (DDDASUS7)

- Remove model (DDDASUS8)

42

Technical Requirements-Solution Architecture

As depicted in Figure 13, the user interface for the model registration, enter model metadata,

remove model are shown as part of the Dashboard component. It is a basic registration form

in which model and model metadata are requested.

Figure 10 Scenario Management Sequence Diagram

43

Technical Requirements-Solution Architecture

Figure 11 Simulation Orchestration Sequence Diagram

44

Technical Requirements-Solution Architecture

Figure 12 Model Management Sequence Diagram

Figure 13 DDDAS Mock-up

45

Technical Requirements-Solution Architecture

3.2 DSS Component

3.2.1 Targeted behaviour and functionalities

The main activities of the DSS component are the following:

• Configuration System: It defines the models, scenarios and devices parameters.

• Decision System: Select predictive models to make decisions regarding with the best

scenarios/strategy. To choose the best scenarios among the successful ones that

have been provided by DDDAS.

• Decision Archive: It is essentially a data base that keeps all the relative information

regarding with the best scenario that has been chosen by Decision System.

Figure 14 DSS Activities, tasks and stories.

46

Technical Requirements-Solution Architecture

3.2.2 User stories description

The textual description of each user story depicted in Figure 14 is as follows:

Table 5 User Stories Description

User story User story description

DSSUS001

Configure model

parameters

Description

Who: Admin of the Dashboard / DSS Admin

What: Configure model parameters

Why: in order to provide the appropriate model parameters to

decision system given the expected simulation.

Acceptance Criteria:

Ability to define model parameters whose validity can be

programmatically assessed by querying the model library

DSSUS002

Configure scenarios

parameters

Description

Who: Admin of the Dashboard / DSS Admin

What: Configure scenarios parameters

Why: in order to provide the appropriate scenario parameters to

decision system.

Acceptance Criteria: Front end linked with backend

successfully making API calls.

DSSUS003

Configure device

parameters

Description

Who: Admin of the Dashboard / DSS Admin

What: Configure device parameters

Why: in order to provide the appropriate device parameters to

decision system.

Acceptance Criteria:

Specify input thresholds that correspond to the input devices

operational capacity.

DSSUS004

Select the decision

system model

Description

Who: Admin of the Dashboard / DSS Admin

What: Select the decision system model

Why: in order to choose the best scenario/strategy

47

Technical Requirements-Solution Architecture

Acceptance Criteria: Availability of DSS models on the

platform.

DSSUS005

Select the best scenario

Description

Who: Admin of the Dashboard / DSS Admin

What: Select the best scenario

Why: in order to take the simulation result.

Acceptance Criteria: Trade off analysis being successfully

carried out and explained by the DSS.

DSSUS006

Select the best strategy

Description

Who: Admin of the Dashboard / DSS Admin

What: Select the best strategy

Why: in order to take the simulation result.

Acceptance Criteria:

Optimisation models available on the platform and model

parameters definition (To be elaborated in Task T2.3 Decision

Support System Interface and APIs)

DSSUS007

Train Archive

Description

Who: Admin of the Dashboard / DSS Admin

What: Train Archive

Why: in order to choose best scenario.

Acceptance Criteria:

KPIs defined and simulations being successfully carried out and

explained by the DSS (To be elaborated in Task T2.3 Decision

Support System Interface and APIs).

DSSUS008

Continuous learning

archive

Description

Who: Admin of the Dashboard / DSS Admin

What: Continuous learning archive

Why: in order to choose the best scenario based on some KPIs.

Acceptance Criteria:

Baseline KPIs defined (To be elaborated in Task T2.3 Decision

Support System Interface and APIs)

DSSUS0010

Generate detailed

evaluation report

Description

Who: Admin of the Dashboard / DSS Admin

What: Visualize the generated evaluation report after receiving

notification of the execution of the selected scenario

Why: To manage decisions and deal with changes

48

Technical Requirements-Solution Architecture

Acceptance Criteria:

Simulation results analysis compared to baseline KPIs (To be

elaborated in Task T2.3 Decision Support System Interface and

APIs)

DSSUS0011

Send notification to user

Description

Who: Admin of the Dashboard / DSS Admin

What: Send notification to user

Why: in order to generate the detailed evaluation report.

Acceptance Criteria:

User registered and authorised (To be elaborated in Task T2.3
Decision Support System Interface and APIs)

The following diagram shows an early UI mock-up of the DSS that will be designed and

developed in the context of Task T2.3 Decision Support System Interface and APIs.

Deliverable D2.3 will include more detailed designs and user stories capturing the Living Labs

requirements. The interface will provide tools for end users to configure the models, input

parameters and run what-if scenario simulations. The overall solution will be scalable and

adaptable to new requirements, able to serve new scenarios beyond the ones elaborated in

the context of the LEAD project.

Figure 15 DSS UI early mock-up

49

Technical Requirements-Solution Architecture

4. Information System Architecture

This section focuses on the application and data architecture levels. Each LEAD component

is described in detail with its internal structure and the interactions between internal or

external LEAD components. First, an internal detailed description of sub-components and

their interactions is realized based on the same legend as for the LEAD architecture diagram

presented early in Figure 3. Then, a presentation of the main data entities that is needed on

those components is presented depending on the level of details of each component (meta-

model, or specific class diagram). Finally, an analysis of each component is realized to define

solution building blocks (SBBs) that we are considering at this level of detail for the

implementation of each component and its sub-components.

Each SBB will be evaluated in the form of ‘+++’ and ‘---’ to cover the functionality, parameters,

and security. The more ‘+’, the better a solution will be covering such aspects, while more ‘-

‘, the less likely a solution is going to be selected for reuse. In terms of reusability, the tool

evaluated are ensured to have an open-source and reuse/extend of source code open

enough to allow the exploitation of such tool beyond LEAD.

From this, an extra column has been added showing the final decision of the LEAD

consortium, as to whether the solution evaluated is re-used or not for developing the

component. The values of this column should be interpreted as follows:

• Reuse as is: the SBB is taken as an initial

• Partial: some of the functionality from the SBB is taken as a basis, but the development

of the component needs further manipulation

• Research: the SBB is not known enough and, thus, more research is needed on this

SBB to make a final decision

• Buy: the SBB, or the functionality of the SBB, is bought into the project in the form of

re-use or minimal development on top of it

• Don’t use: the SBB is disregarded for the development of the component

The listed SBB solutions are collected with the objective to maximize the overlap with

components’ functionalities. For the mapping between the components and the SBBs, the

following architecture principles have been followed:

• Whenever possible, each SBB should cover ALL the targeted component

functionalities

• Whenever possible, each SBB should present reliable non-functional properties to be

implemented within LEAD platform

• Whenever possible, each SBB should offer interoperability enablers to get access to

all its functionalities

50

Technical Requirements-Solution Architecture

• Other principles that could be targeted could be: reuse, coherence, plug and play, etc.

Finally, after the evaluation of each SBB, a final statement will be provided in the future

deliverables for each component (D2.3 and D2.4) justifying the final decision for the

development of the respective LEAD component

4.1 DDDAS Component

4.1.1 Component Interactions description diagram

The following diagram (see also full view in Annex B) presents the main interactions of the

DDDAS.

51

Technical Requirements-Solution Architecture

Figure 16 DDDAS Interaction Diagram

The DDDAS component consists of several sub-components, which are described in this sub-

section. The connections or communications between sub-components will be performed

through direct class calls. And the communications between internal sub-components (in gray

colour) and the other components (green for internal or yellow colour for the external) is

realized through the exposed Restful APIs.

52

Technical Requirements-Solution Architecture

As depicted in Figure 16, the DDDAS is composed of the following sub-components:

• Context entity management: Manages the context entity registration, updates and

data retrieval.

• Model Management: Manages the models from the model library

• Scenario Management: Manages the registration of scenarios, their linked models

and configuration of models

• Simulation Orchestration Engine Management: Manages the configuration of

simulation and the orchestration of the application packages

• DDDAS APIs: Exposes the APIs to get access to the functionalities of the sub-

components described earlier.

• Simulation Environment: This component is outside of the DDDAS; however, it is

important to include it in this description since it has a strong link to the simulation

orchestration engine. This component enables to execute the prepared simulation in

the DDDAS and initialize a complete environment (such as virtual machine, libraries

like python, R…) to execute the targeted simulation and retrieve the outputs.

4.1.2 Component Interactions definition

DDDAS sub-component have several interactions. These interactions are reflected in the

form of a table with the following structure (columns):

• Sub-Component: This column defines the sub-component or the sub-function

• Needs/Gives: This column represents the following type of interactions:

o Gives: The sub-component provides the sub-component defined in column

“With” the data described in column “What”

o Needs: The sub-component needs from the sub-component defined in column

“With” the data described in column “What”

o Needs/Gives: The “What” is exchanged on both directions

• What: This column describes the interaction or the exchanged data

• With: This column points at the sub-component(s) that interacts with the sub-

component defined in column “Sub-Component”

53

Technical Requirements-Solution Architecture

Table 6 DDDAS Interactions Description

Sub-Component Needs/Gives What With

API Needs Sensor/DB data Real World

API Gives Sensor/DB data Context Entity

Management

API Gives Sensor/DB data Orchestration

Engine

Context Entity Management Needs Sensor/DB data API

Context Entity Management Needs Scenario Thresholds Scenario

Management

Context Entity Management Gives Sensor/DB data Storage

Context Entity Management Gives Sensor/DB data Scenario

Management

Model Management Needs/Gives Data

parameters/Model

definitions

Simulation

Management

/Model Library

Model Management Needs/Gives Model

definitions/Data

parameters

Model Library/

Simulation

Management

Scenarios Management Gives Scenario Data Simulation

Orchestration

Engine

Scenarios Management Needs Sensor/DB data Context Entity

Management

Scenarios Management Needs Model Information Model Library

Scenarios Management Needs User parameters API (Dashboard)

Scenarios Management Needs Simulation status Simulation

Orchestration

Engine

Scenarios Management Gives Simulation bundle Simulation

Orchestration

Engine

Scenarios Management Gives Scenario thresholds Context Entity

Management

54

Technical Requirements-Solution Architecture

Scenarios Management Gives Simulation results DSS

4.1.3 Component Classes and Information Exchanged

Figure 17 shows the associated data model for the described interactions in section 4.1.2. At

this level of detail, we defined a meta-model for information exchanged with the context entity

manager, the model manager and the scenario manager. In case of the context entity

manager, the main class is the “Entity” class, that reflects the contextual data entities that are

ingested from external APIs (e.g. sensor data). This data entity can have several attributes,

augmented with more metadata (if needed), enabling to have a dynamic structure to fit

different kind of contextual data entities. Regarding the model or scenario manager, the same

concept is applied to fit to different kinds of models and scenarios and let the DDDAS sub-

components generic enough to gather all the required data for different contexts. These class

diagrams will be further detailed in the context of Tasks T2.3 Decision Support System

Interface and APIs and T2.4 DDDAS (Looping Control) - Sensing - Data ingestion to define

relationships between the components, the models and their metadata, considering also the

work in T2.2 Digital Twin Models Library and specifically subtask ST2.2.3 LEAD Meta-model

definition.

55

Technical Requirements-Solution Architecture

Figure 17 DDDAS Components Data Structures

56

Technical Requirements-Solution Architecture

4.1.4 Definition of Solution Building Blocks: Reuse vs Make vs Buy

Table 7 below analysis the DDDAS to identify solution building blocks (SBBs) that we are

considering at this level of detail for the implementation of each DDDAS component and its

sub-components. This evaluation is made based on the methodology described in the

introduction of section 4.

The final decision about the choice of the solution building blocks will be presented and

justified in D2.4 deliverable for the development of the DDDAS.

Table 7 DDDAS Solution Building Blocks Analysis

Component Solution Level
(Generic ->Specific)

Functionality Evaluation Level

Context Entity

Manager

Orion Context

Broker

Generic All +++ Reuse as is

Eclipse

DITTO

Generic All +++ Partial

Kafka Specific Data pipelines ++ Partial

DDDAS

Dashboard

Angular JS Generic All +++ Reuse as is

Model

Manager

Python Generic All ++ Partial

Scenarios

Management

Python Generic Programming

Logic

++ Partial

Simulation

Orchestration

Engine

SLRUM Specific Workflow

Orchestration

+++ Reuse as is

Drop &

Compute

Specific Workflow

Management

++ Partial

Python Generic Programming

Logic

++ Partial

Docker,

Kubernetes

Generic Virtual

Environment,

Environment

Configuration

+++ Reuse as is

KVM Specific Virtual

Environment

+++ Reuse as is

Ansible Specific Environment

Configuration

+++ Reuse as is

57

Technical Requirements-Solution Architecture

4.2 DSS Component

4.2.1 Component Interactions description diagram

The following diagram (see also full view in Annex B) presents the main interactions of the

DSS.

Figure 18 DSS interaction diagram

58

Technical Requirements-Solution Architecture

The DSS component consists of several functions, which are described in Section 4.2.2.

The connections or communications between functions will be performed through direct

class calls. And the communications between internal functions (in gray colour) and the

other components (green for internal or yellow colour for the external) is realized through

the exposed Restful APIs.

As depicted in Figure 13, the DSS is composed of the following sub-components:

• Configuration System: It configures model, scenarios and devices parameters.

• Decision System: Select predictive models to choose the best scenarios among the

successful ones that have been provided by DDDAS.

• Decision Archive: It is essentially a data base that keeps all the relative information

regarding with the best scenario that has been chosen by Decision System.

• DSS APIs: Exposes the APIs to get access to the functionalities of the sub-functions

described earlier.

4.2.2 Component Classes and Information Exchanged

The figure below is indicative of the LEAD platform underlying data structure (entities,

attributes and metadata definition). The data structure will be developed in the context of Task

T2.4 DDDAS (Looping Control) - Sensing - Data ingestion.

Figure 19 DSS Components Data Structures

59

Technical Requirements-Solution Architecture

4.2.3 Definition of Solution Building Blocks: Reuse vs Make vs Buy

Table 8 below analyses the DSS to identify solution building blocks (SBBs) that we are

considering at this level of detail for the implementation of each DSS component and its sub-

components. This evaluation is made based on the methodology described in section 4.

The final decision about the choice of the solution building blocks will be justified in D2.3

deliverable for the development of each component.

Table 8 DSS Solution Building Blocks Analysis

Component Solution Level
(Generic ->Specific)

Functionality Evaluation Level

Configuration

System

Python/JSON Generic All ++ Partial

Decision

System

Python Specific Bayesian &

Other Model

++ Partial

R Specific Bayesian &

Other Model

++ Partial

Decision

Archive

MongoDB Generic Storage +++ Reuse as is

DSS API’s Soap API Generic Communications +++ Partial

Swagger Generic Communications +++ Partial

Postman Generic Communications +++ Partial

Kafka Generic Communications +++ Partial

Task 2.3 will elaborate the details of the DSS interactions with the user (choosing models and

scenarios) and the dashboard will be co-designed with the Living Labs stakeholders.

4.3 LEAD usage viewpoint

This section describes the relationships between components in terms of the information

flows between them or in terms of the services they offer, and how the identified SBBs are

used to support the execution of the generic business process. Note that in this viewpoint, we

focus only on the specific functionalities to execute the targeted generic processes. However,

more functionalities are provided for the DDDAS and DSS to manage more actions in design

time or run time such as the “continuous learning” or “Train archive”. Please refer to section

3 for a detailed description of all provided functionalities.

60

Technical Requirements-Solution Architecture

Figures from (Figure 20 to Figure 23) illustrate the application usage in LEAD platform. These

Figures are designed based on the ArchiMate 3 specification [2] as follows:

Design Description

A business process represents a sequence

of business behaviours that achieves a

specific result.

A business function represents a collection

of business behavior based on a chosen set

of criteria (typically required business

resources and/or competencies).

There is a potential many-to-many relation

between business processes and business

functions.

An application service represents an

explicitly defined exposed application

behaviour.

An application component represents an

encapsulation of application functionality

aligned to implementation structure, which is

modular and replaceable.

61

Technical Requirements-Solution Architecture

Figure 20 LEAD usage view point - Data ingestion

Figure 21 LEAD usage view point - Configure what-if scenario

62

Technical Requirements-Solution Architecture

Figure 22 LEAD usage view point - Simulation configuration & execution

Figure 23 LEAD usage view point - Data ingestion - Decision System

63

Technical Requirements-Solution Architecture

5. Technology Architecture

This last phase enables to define the communication endpoints of the identified components

in the IS Architecture to be used during the implementation. The focus is on API definitions

and common data models that are provided for LEAD inter-communication, as well as the

security aspects and the infrastructure that supports the LEAD platform.

5.1 APIs Definition & Documentation

This section describes the technical specification and how the public interfaces will provide

access to the functionality of the different LEAD components and Assets.

The focus is on interface definitions and common LEAD data models that are provided for

LEAD inter-communication. As such, the deliverable mainly consists of online documentation,

which is acting as a living document, and can be updated as soon as an endpoint changes.

This living document allows only a little effort to communicate changes to all partners,

developers and general public. This document itself represents an introduction to the on-line

work.

OpenAPI Specification16 emerged as an approach to building APIs and became one of the

most popular frameworks providing a blueprint for API behaviour. OpenAPI Specification is

the largest framework for designing APIs using a common language and enabling the

development across the whole API lifecycle, including documentation, design, testing, and

deployment. The framework provides a set of tools that help programmers generate client or

server code and install self-generated documentation for web services.

For our purpose of documenting the exposed APIs, it has been decided to adopt Swagger

Hub17 that integrates the core Swagger tools (UI, Editor, Codegen, Validator) to document

and share the APIs within LEAD partners and with the interested public. Each API is described

using YAML18 structure and is following the OpenAPI 3.0 specification19 (see Figure 24 for an

example).

16 https://swagger.io/
17 https://app.swaggerhub.com/s
18 https://en.wikipedia.org/wiki/YAML
19 https://swagger.io/docs/specification/about/

64

Technical Requirements-Solution Architecture

Figure 24 OpenAPI specification example

5.2 Online Document Reference

The API documentation for each component is referenced via a web link shown in the table

below. The complete online documentation is accessible at

https://app.swaggerhub.com/search?query=leadproject.eu and will be updated continuously.

This online documentation is quite comprehensive and should be fully explored. An example

for one part, of one component, is described in this section for illustrative purposes. We

provide in Annex A an offline copy of the current description of each API.

Table 9 APIs Description - Online Documentation

Component Reference

DDDAS

Context Entity Manager https://app.swaggerhub.com/apis/andalexo/lead-

dddas/0.1.0#/context

https://app.swaggerhub.com/search?query=leadproject.eu
https://app.swaggerhub.com/apis/andalexo/lead-dddas/0.1.0#/context
https://app.swaggerhub.com/apis/andalexo/lead-dddas/0.1.0#/context

65

Technical Requirements-Solution Architecture

Models Manager https://app.swaggerhub.com/apis/andalexo/lead-

dddas/0.1.0#/models

Scenario Manager https://app.swaggerhub.com/apis/andalexo/lead-

dddas/0.1.0#/scenarios

Simulation Orchestration Manager https://app.swaggerhub.com/apis/andalexo/lead-

dddas/0.1.0#/simulations

DSS

Configuration System https://app.swaggerhub.com/apis/andalexo/lead-

dss/0.1.0#/config

Decision System https://app.swaggerhub.com/apis/andalexo/lead-

dss/0.1.0#/decision-system

Decision Archive https://app.swaggerhub.com/apis/andalexo/lead-

dss/0.1.0#/decision-archive

The documentation structure consists of 3 columns as depicted in Figure 25. The left column

lists the entire functions of each component. The middle column describes the operations,

requests, and security information. The right column presents a user interface to read the

description in a visual manner, including a possibility to test the APIs.

https://app.swaggerhub.com/apis/andalexo/lead-dddas/0.1.0#/models
https://app.swaggerhub.com/apis/andalexo/lead-dddas/0.1.0#/models
https://app.swaggerhub.com/apis/andalexo/lead-dddas/0.1.0#/scenarios
https://app.swaggerhub.com/apis/andalexo/lead-dddas/0.1.0#/scenarios
https://app.swaggerhub.com/apis/andalexo/lead-dddas/0.1.0#/simulations
https://app.swaggerhub.com/apis/andalexo/lead-dddas/0.1.0#/simulations
https://app.swaggerhub.com/apis/andalexo/lead-dss/0.1.0#/config
https://app.swaggerhub.com/apis/andalexo/lead-dss/0.1.0#/config
https://app.swaggerhub.com/apis/andalexo/lead-dss/0.1.0#/decision-system
https://app.swaggerhub.com/apis/andalexo/lead-dss/0.1.0#/decision-system
https://app.swaggerhub.com/apis/andalexo/lead-dss/0.1.0#/decision-archive
https://app.swaggerhub.com/apis/andalexo/lead-dss/0.1.0#/decision-archive

66

Technical Requirements-Solution Architecture

Figure 25 API Description - Component overview

Each API endpoint is presented with all required and optional parameters inside the URL and

also the http body (Figure 26). The parameters tab lists all parameters and provides

information regarding the parameter type, object type, and a description of purpose of each

parameter. In this documentation, three kinds of parameters types are used:

• Resource parameters, that are used to access specific resources via unique

identifiers in order to retrieve information (GET), update properties of an object or to

remove a resource, e.g. /v1/context/1234 where 1234 identifies the context entity

• Query parameters that enable the extension of a request with a string. This string

contains named parameters that can then be evaluated by a Web application, e.g.

/v1/assets?type=device, where a list is retrieved with only assets of type device.

• Body content, that contains a JSON object or a list of JSON objects that can be

evaluated by a web application. Body contents are normally only contained in requests

that create (POST) or edit (PUT) a resource.

The object type, on the other hand, describes the expected value of a parameter. This object

type must be adhered to or the query will not be executed correctly and an error will be

returned.

Finally, the response describes the returned result from the request. The response always

67

Technical Requirements-Solution Architecture

returns an http status code to indicate the acknowledgment. In the case of the example

(Figure 26), a representation of an asset in JSON format is returned combined with an http

status code 200 (OK), 400 (invalid input) or 404 (resource not found). A complete list of all

standardized http status codes can be seen at https://www.w3.org/Protocols/rfc2616/rfc2616-

sec10.html.

Figure 26 API endpoint - Get Context Entity

5.3 Online Documentation Updates

The online documentation will be continuously updated during the development work. Data

models can change at any time and therefore the APIs endpoint definition has to be updated.

68

Technical Requirements-Solution Architecture

The partners are responsible for their own content and are able to update their components

on their own.

5.4 Privacy and Security Concepts

All LEAD components will implement a security protocol to give access to its resources as

described in the sequence diagrams of section 3 and APIs description in section 5.1.

The authentication manager component will be based on the OAuth protocol20 that addresses

this issue by introducing an authorization layer and separating the role of the client from that

of the resource owner. In OAuth, the client requests access to resources controlled by the

resource owner and hosted by the resource server and is issued a different set of credentials

than those of the resource owner.

Instead of using the resource owner's credentials to access protected resources, the client

obtains an access token (a string denoting a specific scope, lifetime, and other access

attributes). Access tokens are issued an authorization server with the approval of the resource

owner. The client uses the access token to access the protected resources hosted by the

resource server.

Regarding the data governance and exchange between the LLs and the LEAD Platform, it

will be secured based on the TLS (Transport Layer Security) 21 protocol, and each partner is

responsible to make its models and components supporting the GDPR compliance.

5.5 Deployment Diagram

This section shows how one or more applications are realized on the infrastructure. This

comprises the mapping of applications and components onto artifacts, and the mapping of

the information used by these applications and components onto the underlying storage

infrastructure.

Figure 27 depicts the Legend (based on ArchiMate 3 specification [3]) for the deployment

diagram presented in Figure 28. The Cloud Computing side of the LEAD Platform enable to

deploy one instance for all LL partners as depicted in Figure 28. The main location of the

cloud infrastructure is located in the EU and can be reached from any other location. LLs will

need only a Web browser to get a secured access to LEAD Platform through the secured

channel connection (via the HTTPS protocol) and an authentication that is required to get

access to the exposed components of LEAD Platform.

20 https://swagger.io/docs/specification/authentication/oauth2/
21 https://en.wikipedia.org/wiki/Transport_Layer_Security

https://swagger.io/docs/specification/authentication/oauth2/
https://en.wikipedia.org/wiki/Transport_Layer_Security

69

Technical Requirements-Solution Architecture

Regarding the deployment of the components (such as the DDDAS, DSS or storages), and

after the evaluation of the SBBs as presented in section 4, it has been decided to adopt

Docker as a containerization technology for the deployment and management of the software

systems lifecycle.

Figure 27 Legend for the Deployment Diagram

70

Technical Requirements-Solution Architecture

Figure 28 Deployment Diagram

6. Conclusion

This deliverable has defined the architecture of LEAD and its main generic process that is

shared between all LLs. The global architecture defines all LEAD components and their

interconnection. It is based on the main components defined in the description of action but

at a more detailed level including their main interactions. Then a specific and detailed view of

each component is described, along with its behaviour and functionalities, technical

foundations and infrastructure details.

71

Technical Requirements-Solution Architecture

This deliverable will drive the work carried out in Tasks T2.2 (Digital Twin Models Library),

T2.3 (Decision Support System and APIs), and T2.4 (DDDAS – Sensing – Data ingestion).

Indeed, for T2.2, a detailed definition of its main consumer client in LEAD platform is defined

(DDDAS) with a detailed specification about its targeted functionalities, data structure, and

interactions with the model library. This will help to better design and consolidate the library

of open source models that will be used in the LLs digital twins. Regarding T2.3 and T2.4, a

detailed specification is initiated and provided in this deliverable, along with the UIs, APIs,

components interactions, and a development plan that will enable the understanding,

development and continuous improvement of the components.

It will invariably happen that due to further work during the project, it will lead to a revisiting of

the architecture in an agile and practical approach. In this case, the changes will be clearly

identified and recorded in the coming deliverables.

7. References

[1] The Open Group, TOGAF® Version 9.1. A Pocket Guide. The Open Group. December

2011.

[2] UN/CEFACT, "Multi Modal Transport Reference Data Model (UN/CEFACT SHIP/MMT-

RDM)".

[3] UN/CEFACT, "UN/CEFACT Buy-Ship-Pay Reference Data Model BSP-RDM Version

1.0.," 2019.

[4] [Online]. Available: https://developers.google.com/transit/gtfs.

[5] [Online]. Available: http://www.transmodel-cen.eu/.

[6] A. 3. Specification, "Application Usage Viewpoint," [Online]. Available:

https://pubs.opengroup.org/architecture/archimate3-doc/apdxc.html. [Accessed 10 02

2021].

[7] T. O. Group, "Implementation and Deployment Viewpoint".

72

Technical Requirements-Solution Architecture

8. Annex A

This annex depicts the current state (at the time of production of this deliverable) of each

described API that is accessible in SwaggerHub as described in section 5.2.

Component Swagger Description

DDDAS

Context

Entity

Manager

73

Technical Requirements-Solution Architecture

74

Technical Requirements-Solution Architecture

Models

Manager

75

Technical Requirements-Solution Architecture

Scenario

Manager

76

Technical Requirements-Solution Architecture

Simulation

Orchestration

Manager

77

Technical Requirements-Solution Architecture

DSS

Configuration

System

78

Technical Requirements-Solution Architecture

79

Technical Requirements-Solution Architecture

80

Technical Requirements-Solution Architecture

Decision

System

81

Technical Requirements-Solution Architecture

Decision

Archive

9. Annex B

The following diagrams present the main interactions of the DSS and the DDDAS

components.

LEAD Platform

DDDAS - Component Interaction

DDDAS

getScenariosData()
setScenariosData()Scenario Management

getData()
setData()

<user interface>
 DDDAS & DSS UI

executeQuery()

Model Management

getContextEntity()
setContextEntity()

subscribeToEntity()

<interface>
DDDAS APIs

Data and General Storage

Model Store

use()
setConfiguration()

getContextEntity()
subscribeToEntity()

Actor

getScenariosData()
setScenariosData()

executeQuery()

Context Entity Management

getData()
setData()

Simulation
Orchestration Engine

Physical World

SensorsAPIsCity Operational
Data

Sensors, APIs...

SensorsAPIsCity Operational
Data

contextEntity data

data

data

data

User/info/
Access/Security

callAPI()

data

Data

data

getModelParameters()
setModelParameters()

Simulation Environment
Application Pkg, Execution Environment

(e.g matlib, Python runtime, R etc)

getSimEngine()
setSimEngine()

Ontology Store

Graph Database

Time series
Database

Document
Database

getData()
setData()

data

getData()
setData()data

data

getData()
setData()

Graph
Database

API

Time
Series

Database
API

Document
Database

API

Model
Store
API

Native
access

User/
Info/

Access/
Security

API

Ontology
Store
API

LEAD Platform Frontier

DSS - Component Interaction

DSS

getBestScenario()
setBestScenario()

<user interface>
 DDDAS & DSS UI

executeQuery()

Decision System

getFunctionalities()
setFunctionalities()

subscribeFunctionalities()

<interface>
DSS APIs

Data and General Storage

Ontology Store

use()
setConfiguration()

getData()
setData()

Actor

getConfigureParameters()
setConfigureParameters()

executeQuery()

Configuration System

Decision Archive

Physical World

SensorsAPIsCity Operational
Data

Sensors, APIs...

SensorsAPIsCity Operational
Data

data

data

data

data

data

User/info/Access/
Security

callAPI()

Data

Model Store

Graph Database

Time series
Database

Document
Database

Model
Store
API

Native
access

User/
Info/

Access/
Security

API

Ontology
Store
API

Graph
Database

API

Time
Series

Database
API

Document
Database

API

data

getdDecisionModels()
setDecisionModels()

data

Historical
DatabaseHistorical

Database
API

data

executeQuery()

executeQuery()

